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Abstract

Automatic processing of magnetic resonance images (MRI) is a vital part of neuro-

science research. Yet even the best and most widely used medical image processing

methods will not produce consistent results when their input images are acquired with

different pulse sequences. The lack of consistency is a result of multiple sources of

variation in the acquired MRI data. MRI, unlike computed tomography (CT), does not

produce images where the magnitude of the intensity is standardized across scanners.

In a typical scanning session, different MRI pulse sequences are acquired at different

resolutions for various reasons. Certain pulse sequences are prone to artifacts that

cause corrupted data. Medical image analysts have developed preprocessing algorithms

such as intensity standardization and image synthesis methods to address this problem.

However, their performance remains dependent on knowledge and consistency of the

pulse sequences used to acquire the images. In this thesis three different approaches—

REPLICA, Ψ-CLONE, and SynthCRAFT—to perform image synthesis in MRI are

presented. REPLICA is a multi-resolution framework that performs random forest

regression with carefully designed features that capture anatomical variability in MRI.
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ABSTRACT

Ψ-CLONE takes into account the physics of MRI acquisition process and estimates

the pulse sequence parameters used to acquire the given subject image. These are

then used to create new training images that are, by design, standardized to the

subject image. This step allows for improved training of the random forest regression,

which generates the final synthetic image. SynthCRAFT, in contrast to REPLICA

and Ψ-CLONE, is a probabilistic framework for image synthesis. The conditional

probability of the unknown, desired, synthetic image given the subject input images is

modeled as a Gaussian conditional random field (CRF). Inference on this CRF, which

models inter-voxel dependencies, results in the output synthetic image. All approaches

were validated using simulated and real brain MRI data by direct image comparison

and were shown to outperform state-of-the-art image synthesis algorithms. The ability

to synthesize T2-weighted (T2w) and FLuid Attenuated Inversion Recovery (FLAIR)

images has been showcased for all three algorithms. Subsequent lesion segmentations

of synthetic FLAIR images were shown to be similar to those obtained from real

FLAIR images, thus demonstrating the utility of synthesis. In addition, REPLICA

was shown to be capable of synthesizing full-head images (not skull-stripped), which

is a challenging synthesis task. Intensity standardization using synthesis between

two different T1-weighted pulse sequences was demonstrated using REPLICA and

SynthCRAFT. Ψ-CLONE was used to standardize the intensities of a large dataset,

leading to more consistent segmentation results within that dataset. All three algo-

rithms were used to perform super-resolution of low resolution T2w and FLAIR images.
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ABSTRACT

The resulting super-resolution FLAIR images showed improved lesion segmentation.

All three methods were demonstrated to be effective preprocessing algorithms that

mitigated the variation in MRI data and improved the consistency of subsequent

image processing.

Primary Reader: Dr. Jerry L. Prince

Secondary Readers: Dr. Russell Taylor and Dr. Junghoon Lee
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) of the brain is the investigative imaging

modality of choice for clinicians and neuroscience researchers. MRI is capable of

delivering high quality, high resolution, three dimensional images of the brain, in a

risk free fashion. An MRI scanner stimulates the tissues that produce a signal that

is dependent on their nuclear magnetic resonance (NMR) properties. This signal

is recorded as the acquired image. In comparison, computerized tomography (CT),

a competing imaging modality, uses multiple x-ray projections of the anatomy to

reconstruct a 3D image. Harmful ionizing radiation, such as x-rays, is absent in MRI.

In addition to being safer, the true power of MRI lies in its immense versatility.

The intrinsic NMR properties such as proton density (PD), longitudinal relaxation

time (T1), transverse relaxation time (T2), T2
∗ decay time, among others, can be

manipulated in a variety of ways to tease out structural and functional differences
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PD map (aPD
) T1 map (aT1) T2 map (aT2) T1w Image

(a) (b) (c) (d)

Figure 1.1: Shown here are the intrinsic NMR parameter maps of a brain. Particularly
(a) PD map, (b) T1 map, (c) T2 map, and finally (d) a T1-weighted image produced by
the MPRAGE pulse sequence.

between the tissues being imaged. The procedure to perform such manipulations

is called a pulse sequence. Pulse sequences are implemented using a strong, fixed

magnetic field in the scanner that is subtly changed by applying gradients and radio-

frequency (RF) stimulations. These stimulations cause the brain tissues to emanate

RF signals with properties influenced by the tissue NMR parameters. Figures 1.1(a)–

(c) show the intrinsic NMR properties, PD, T1, and T2 maps that influence MRI

intensities in a typical MRI image (produced by the Magnetization Prepared Gradient

Echo (MPRAGE) pulse sequence image in Fig. 1.1(d)). We notice that the white

matter (WM), which forms the brightest regions in the MPRAGE image, has different

NMR parameters than the gray matter (GM).

Many pulse sequences have been invented and continue to be invented for use in

radiological diagnosis and medical science. During a single MRI scanning session,

multiple pulse sequences can be acquired. Together, they provide us with complemen-
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tary information about the underlying anatomy and function. Pulse sequences can

be designed to obtain an image contrast that is primarily influenced by a particular

intrinsic NMR parameter; for instance, pulse sequences like Magnetization Prepared

Gradient Echo (MPRAGE) [5], or Spoiled Gradient Recalled (SPGR) [6] are designed

to create a tissue contrast that is heavily T1-weighted (T1w). For neuroimaging,

this means that image intensities of tissues such as WM, GM, and cerebrospinal

fluid (CSF) are heavily influenced by their T1 values. These pulse sequences provide a

very good WM-GM contrast and therefore, are useful to radiologists for visualizing

the cortex and sub-cortical structures like the thalamus, caudate, putamen, etc. T1w

pulse sequences are also preferred as inputs for automated tissue segmentation [7–9]

and cortical reconstruction algorithms [10–12]. Other common neuroimaging pulse

sequences include the dual spin echo (DSE) which generates two images, one of which

is PD-weighted (PDw) while the other is T2-weighted (T2w) (see Figs. 1.2(b) and

1.2(c)). Another popular T2w pulse sequence is the FLAIR (FLuid Attenuated Inver-

sion Recovery) sequence (see Fig. 1.2(d)). It is used extensively for imaging multiple

sclerosis (MS) patients because it can provide a large image contrast between white

matter lesions (WML) and normal WM. The lesions appear hyperintense (brighter) as

compared to the normal WM, thus making it easier to delineate them using manual as

well as automated lesion segmentation algorithms. It is vital to discover and quantify

lesions because they are used as a criterion for disease diagnosis and can be tracked

longitudinally to follow the disease state [13–15]. Figures 1.2(a)–(d) show the images
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MPRAGE PDw of DSE T2w of DSE FLAIR

(a) (b) (c) (d)

Figure 1.2: Shown here are different pulse sequence acquisitions: (a) MPRAGE, (b)
the PDw output obtained from the first echo of the DSE sequence, (c) the T2w output
obtained from the second echo of the DSE sequence, and (d) FLAIR.

obtained by these sequences for a particular subject.

1.1 Variation in MRI Acquisitions

The versatility of MRI is a boon to diagnosticians. However, the variability in

acquisitions introduced by the versatility poses a significant hurdle for image processing.

Some of the observed variations in MRI data are as follows:

• Inconsistent acquisition protocols:

Patient scanner time is finite and thus decisions are made about which subset

of the many available pulse sequences to use. Another factor in this decision is

the expense of scanning and the long scan time associated with various pulse

sequences (DSE and FLAIR, for example).
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• Inconsistent quality within a scanning session:

A confounding factor in acquired MRI data is its inhomogeneous quality arising

from the different imaging requirements of each pulse sequence. For example, the

DSE pulse sequence is generally acquired at a much lower resolution than a T1w

MPRAGE pulse sequence because of a longer repetition time (TR). Even for

the same pulse sequence, it is not easy to ensure that pulse sequence parameters,

such as the flip angle for instance, are well-calibrated. This can result in the

same subject having slightly different image data when scanned in the same

scanner after a short interval.

• Presence of artifacts and/or missing images:

Pulse sequences like FLAIR suffer from artifacts that are not present in other

pulse sequences [16], contributing to problems with their use in multimodal

analysis. In particular, the imaging data can be corrupted due to patient motion

or inappropriate parameter settings.

• Multi-site and multi-scanner data:

The problem is compounded when we consider data acquired from multiple sites

that may house scanners from different manufacturers. Furthermore, scanner

upgrades often change the image quality observed for the same pulse sequence.

Both of these circumstances can affect the consistency of image processing

algorithms [17].
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None of these issues is difficult for trained radiologists to deal with for the purpose of

diagnosis. However, most image analysis algorithms are not robust to these variations

and give rise to inconsistent results [2, 18–23]. Results of image analyses obtained

from such data are not ideal for drawing scientific conclusions. Our research in this

thesis focuses on improving the utility of multimodal data through image synthesis,

either by restoring corrupt data or by standardizing the intensity of existing data.

1.2 Image Synthesis: Motivation and Pre-

vious Work

By image synthesis we mean applying an intensity transformation to available MR

images in order to produce new images that appear to have been acquired by a specific

pulse sequence or an imaging modality. We also define intensity standardization,

which is a common preprocessing task in MRI image processing pipelines. Intensity

standardization transforms the intensities of a given subject image to a reference

image, typically of the same (or similar) pulse sequence. It is a special case of image

synthesis, in which the synthesized image is of the same (or similar) pulse sequence.

Synthesized images are not meant to be used for diagnostic purposes or to replace

scanning subjects. Rather, they are intended to facilitate image analysis for the

extraction of clinical or scientific information.

We propose to use image synthesis as a solution to mitigate the variation in MRI
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data. Some scenarios in which we can envision using image synthesis are as follows:

• If certain pulse sequence images were not acquired in a dataset, and were

retrospectively discovered to be useful for image processing, image synthesis can

be used to generate these.

• If certain pulse sequences images were acquired at a lower resolution, image

synthesis can be used to create super-resolution images from the available

ones. Improved resolution leads to better image processing such as improved

registration and segmentation.

• If in an imaging session, one of the images is corrupted due to artifacts or any

other reason, image synthesis can be used to generate an artificial replacement

using the rest of the available images.

• If we have datasets from two different sites or scanner manufacturers that we

need to reconcile, we can use image synthesis to transform image intensities of

one of the datasets to match with the other to produce an intensity standardized

dataset that will have a similar response to image analysis algorithms.

Image synthesis has gained significant attention in the medical imaging community

in the last seven years [4, 24–38]. A typical image synthesis task is shown in Fig. 1.3,

where the goal is to predict a synthetic T2w image b̂2 given an input T1w image b1.

The target T2w contrast in b̂2 needs to be the same as the T2w contrast observed in

a training image a2. We also have the corresponding T1w image a1, which may or
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(a) Atlas a1 (b) Atlas a2

(c) Subject b1 Subject b̂2

Figure 1.3: An example image synthesis scenario with training atlas images and a
given subject image.

may not have the same acquisition parameters as b1. a1 and a2 preferably should be

of the same resolution. We refer to the training images as atlas images. We refer to

the test image b1 and the unknown synthetic image b̂2 as subject images. By pulse

sequence we mean particular image acquisition strategy, for example, MPRAGE. By

contrast we mean the tissue contrast produced by a pulse sequence, say a T1w contrast

or a T2w contrast. Since these contrasts are visually very different from each other,

they can be treated as different modalities as well. For instance, the MPRAGE pulse

sequence (or modality) produces a T1w contrast image. Since in most cases our data

consists of specific pulse sequences producing specific contrasts, these terms are used

interchangeably.
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Image synthesis approaches in the literature can be broadly classified into two

types:

• Registration-based

• Intensity transformation-based.

The main idea behind registration-based image synthesis was first described by Miller et

al. [39]. They presented image synthesis as a single atlas registration and transformation

problem. Given a subject image b1 with contrast C1 and a pair of co-registered atlas

images a1 and a2 of contrasts C1 and C2, respectively, a1 is registered to b1 using a

deformable registration algorithm, and the obtained transformation is then applied to

a2 to produce the synthetic image b̂2 with contrast C2. They demonstrated synthesis

of positron emission tomography images (PET) from MR images using this approach.

An extension of this approach was described recently by Burgos et al. [3, 33] to

synthesize CT images from MR images. They used multiple, aligned pairs of MR

and CT images as atlases. Given a subject MR image, they registered all the MR

atlases to it using deformable registration. The same deformations were applied to

corresponding CT atlas images and intensity fusion was performed at each voxel to

synthesize a subject CT image. The synthetic CT images were then used to learn

the attenuation coefficients needed for PET reconstruction. This work was further

extended by Cardoso et al. [40], wherein they framed the multi-atlas registration and

intensity fusion as a generative process to perform image synthesis and inlier-outlier

9



CHAPTER 1. INTRODUCTION

classification.

Registration-based approaches are heavily dependent on the quality of the initial

deformable registrations. Registration is not very accurate in the cortex of the brain,

which is a highly convoluted region with many fine details. Consequently the synthesis

in such regions is inaccurate. Another important issue is the quality of synthesis when

the subject image presents abnormal anatomy, for example white matter lesions in

multiple sclerosis patients. The location of these lesions in the brain is variable from

subject-to-subject. Registration-based approaches are severely limited by the fact that

the lesions may not occur in the exact same anatomical region of the atlas images as

that of the subject image. If the atlas regions do not show lesions in those specific

regions, then these will not be synthesized in the synthetic subject image. All current

registration-based approaches [3, 39,40] suffer from this problem. Cardoso et al. [40]

model the intensities not present in the atlas as an outlier class and detect such regions

as outliers in the synthesis process. However, the synthetic images themselves cannot

be used as substitutes for real images for further image processing as they do not have

the same appearance.

Intensity transformation-based image synthesis approaches are usually supervised

prediction approaches. Supervised approaches require training data in the form of

aligned atlas pairs of input and target contrast images. The learning task involves

predicting the desired contrast intensities given information derived from the input

images. To do this, one needs to create training data from the atlas images. For a
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voxel location i in the atlas image a1, we can extract a feature vector fi, which could

be a small 3D patch of voxels around i, for instance. It is paired with a corresponding

voxel intensity vi from a2. These are sampled from all over the atlas images to create

the training data. Since the goal is to predict an image voxel intensity, which is

a continuous value, image synthesis is a regression problem. It is possible to learn

this regression using one of the many regression algorithms in the machine learning

literature [41, 42]. Once the regression is learned, we can extract the same features

from the subject image b1, apply the regression and generate a voxel intensity in the

synthetic subject image b̂2. On the face of it, this appears to be a reasonable approach

to tackle image synthesis and researchers have approached it in a variety of ways.

One of the first intensity transformation-based synthesis methods, image analo-

gies [43], came out of the computer graphics literature. Given the atlas image a1 and

a2 of contrasts C1 and C2 respectively, a2 is assumed to be a filtered version of a1, i.e.

a2 = h ∗ a1, where h is an unknown filter and ∗ denotes the convolution operator.

Given a subject image b1, the task is to generate an image b̂2, such that b̂2 = h ∗ b1.

Each patch extracted from b1 was matched to k nearest neighbor patches extracted

from a1. The corresponding patches from a2 were combined to form a patch of b̂2, in a

multi-scale framework. Image analogies has seen use in MR image synthesis with the

goal of producing synthetic images for registration purposes [35]. Image analogies is

handicapped by the fact that the nearest neighbor search for a high-dimensional patch,

among a million patches is computationally very expensive. Roy et al. [4, 28] framed
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the image synthesis problem as a sparse representation and reconstruction problem

for small patches. Patches from a1 are extracted to form a dictionary. Corresponding

patches from a2 are also extracted to create the target contrast dictionary. Next, each

patch from b1 is expressed as a sparse, linear combination of the a1 dictionary patches.

The corresponding patch of b̂2 is generated as the same linear combination of the

corresponding patches from a2 dictionary. They showed a variety of applications of

image synthesis in neuroimaging [4]. This approach, which is called MIMECS [4,28], is

computationally expensive. It is not easy to add new features and increase the dimen-

sionality of the patches, as this slows down the reconstruction process significantly;

yet without additional features, some of the more challenging synthesis tasks (like

full-head image synthesis) become impossible. Moreover, MIMECS was shown to be

unable to synthesize pulse sequences like FLAIR [4] for subjects showing white matter

lesions. FLAIR images are vital for imaging MS patients with white matter lesions

because these lesions appear hyperintense with respect to the normal white matter

and can be easily visualized and delineated.

1.3 Challenges and Contributions

Limitations in current, state-of-the-art intensity transformation-based algorithms

motivate a number of challenges that we propose to tackle.
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(a) (b) (c)

Figure 1.4: (a) A full head T1w image, (b) T2w image, and (c) a joint histogram for
corresponding T1w and T2w images. The x-axis represents the intensity in the T1w
image and the y-axis represents the T2w intensity.

• Feature design:

Treating image synthesis as a regression problem forces us to design appropriate

features that will produce an accurate synthetic image. The human head consists

of a variety of tissues such as skin, fat, bone, WM, GM, CSF, and lesions among

others. The location and intensities of these tissues in MRI varies considerably

from subject to subject. In order to synthesize the appropriate intensities for

these tissues, we need features that can disambiguate between confounding

intensity mappings.

• Regression:

Once a feature vector design is fixed, we must learn the regression that is going

to generate the synthetic image, voxel by voxel. Looking at the joint histogram

of a T1w and T2w image pair in Fig. 1.4, it is clear that this regression must be

nonlinear. Nonlinear regression can be learned in a variety of ways. We must
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choose an algorithm that is accurate, robust, easy to parametrize, interpretable,

and quick to train and predict.

• Intensity standardization:

A regression algorithm will only be effective in prediction on test data if the

samples in the training data are representative of the samples in the test data.

The training feature vectors are extracted from a1 and the test feature vectors

from b1. All feature vectors that can be designed and extracted are going to be a

function of the intensity images a1 and b1. However, a1 and b1 do not necessarily

have the same MRI acquisition parameters. This means that they will not have

similar intensity values for similar tissues. The relation between the common

tissue intensities of a1 and b1 may also not be a simple transform, for example

a simple linear scaling. Thus, it implies that feature vectors extracted from a1

will not be representative of the feature vectors extracted from b1, resulting in

poor prediction performance and therefore, poor quality synthesis.

• Probabilistic interpretation:

If a1 and b1 are assumed to be intensity standardized, a typical regression

algorithm (and all the previous synthesis algorithms) will predict the synthetic

image b̂2, voxel by voxel, in a somewhat ad-hoc manner. Voxels in medical

images do not have intensities that are independent of each other. Neighboring

voxels tend to belong to the same anatomy and tend to present similar intensities.
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None of the previous image synthesis algorithms attempts to model these inter-

voxel dependencies. In addition, the voxel-by-voxel generated images are not

optimal according to any well-defined objective. It is therefore not possible to

determine if a synthetic image is better or worse than any other according to any

well-defined criterion. These issues can be addressed if the problem is modeled in

a probabilistic framework, which has not been attempted by previous synthesis

algorithms.

Our contributions listed below, address these challenges.

1. REPLICA:

Our first contribution jointly addresses the challenges of feature design and

regression. Appropriate feature design is crucial for MRI synthesis, particularly

for full-head images that are not skull-stripped (see Fig. 1.4). If the synthesis

task entails synthesizing the T2w image in Fig. 1.4(b), from the T1w image in

Fig. 1.4(a), we can make the following observations. In Figure 1.4(a) the CSF

and bone from the skull in the T1w image appear dark. However, the CSF

appears very bright in the corresponding DSE T2w image while the skull still

appears dark (Fig. 1.4(b)). If we let the feature vector be just a single T1w voxel

intensity from a1, it is paired with the corresponding single T2w voxel intensity

from a2 when the training data is created. In the training data, we will have

dark voxels in T1w images being mapped to dark voxels in T2w images (skull

voxels) and also being mapped to bright voxels in T2w images (CSF voxels). This
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ambiguity is visible in the joint histogram of T1w and T2w images in Fig. 1.4(c),

where for low T1w intensities on the x-axis, we see two clusters, one with a low

T2w intensity (skull) and one with a high T2w intensity (CSF), on the y-axis.

A regression learned on such training data is bound to have training and

hence, prediction errors. Thus, it is imperative to design features that will

result in an unambiguous mapping. An ideal feature vector should encode global

and local information that remains comparable across different subjects. For

example, a small intensity patch surrounding voxel i provides information about

the local anatomical context. By itself however, it is inadequate to disambiguate

between one-to-many intensity mappings. Therefore, we augment it with a

context descriptor, described in Chapter 2, that provides some global spatial

context of the location of the voxel in the brain anatomy.

The more features we augment, the higher is the dimensionality of the

feature vector. At very high dimensions, it is difficult to find nearest neighbor

matches for a given test feature vector based on Euclidean distance. It is also

computationally intensive. We observed that a small patch provides a much

larger anatomical context at a lower resolution. Based on this observation, we

have designed a framework that decomposes the images into a multi-resolution

Gaussian pyramid and synthesizes each level of the pyramid, from lower to high

resolution, step-by-step. We call this framework REPLICA. In REPLICA, a

small 3×3×3-sized patch at two levels lower resolution in the Gaussian pyramid
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covers a large part of the anatomy and provides global context that is provided

by a 12× 12× 12-sized patch at the given resolution (i.e., the highest available

resolution). Using such a patch immediately reduces the dimensionality of the

feature vector from 1728 to 27.

To learn the nonlinear regression, we choose the random forests [42] method.

A random forest learns the nonlinear regression by approximating it in a piecewise

constant manner and learning all the pieces. It is very fast to train, and easy to

interpret. Prediction is also very fast, which is ideal since we want to use our

algorithms for quick pre-processing.

REPLICA can be used to perform intensity standardization and alternate

tissue contrast synthesis. REPLICA-generated synthetic images have been shown

to provide more consistent segmentation. We have also used REPLICA to gener-

ate substitute synthetic images as target images for registration tasks and shown

improved registration [44]. More importantly, REPLICA is designed to be robust

enough to handle complex synthesis scenarios such as synthesizing full-head

MRI images, unlike skull-stripped brain images. Full-head image synthesis is a

hard problem due to large variations in anatomy and intensity values and cannot

be achieved by other synthesis algorithms as easily. REPLICA is described in

detail in Chapter 2. A journal paper manuscript describing REPLICA has been

submitted and is under review.
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2. Ψ-CLONE:

Our second contribution addresses the problem of intensity standardization in

synthesis by standardizing the subject image b1 to the atlas image a1 using

a novel technique that takes into account the MRI acquisition physics of the

the pulse sequences used to acquire a1 and b1. In this approach, given just the

intensity image b1, we can approximately estimate the pulse sequence parameters

used to acquire it. We can apply this pulse sequence imaging equation to the

intrinsic NMR parameter maps of the atlas images such as aPD
, aT1 and aT2 (see

Fig. 1.1) to create a new, additional atlas image ab1 , which is a synthetic atlas

image that, by design, has the same pulse sequence parameters as that of b1. In

essence, they are intensity standardized, and hence, feature vectors extracted

from ab1 are now representative of those extracted from b1. Now we can extract

training data and learn a regression that can then be applied to feature vectors

from b1 to produce a more accurate synthetic image b̂2. In our approach, we

use small patches as feature vectors and use random forests [42] to learn the

nonlinear regression that predicts intensities of b̂2.

We refer to this approach as Ψ-CLONE [45]. We have used Ψ-CLONE for

synthesizing T2w images from T1w images, synthesizing FLAIR images from

input T1w, PDw, and T2w images, and intensity standardization tasks. We have

also shown improved image analysis results such as consistent segmentation, as a

18



CHAPTER 1. INTRODUCTION

result of our synthesis. Ψ-CLONE is computationally fast and can be easily used

as a preprocessing method for image analysis pipelines. Ψ-CLONE is described

in depth in Chapter 3 and has also been published in the Medical Image Analysis

journal [45].

3. SynthCRAFT:

In our third contribution, we have proposed a probabilistic framework within

which we can frame any image synthesis problem. REPLICA in its present

form does not produce an image that is considered optimal according any well-

defined objective. We model the synthesis problem as an inference problem on a

Gaussian conditional random field (GCRF). We employ what we have learned

from designing REPLICA and Ψ-CLONE to build a framework within which

we can specify probability distributions of entire unknown, to-be-synthesized

images, given available images. We call this framework SynthCRAFT [46].

Using SynthCRAFT, given a subject T1w image b1, we are able to construct a

probability distribution p(b2|b1), of the corresponding T2w image b2, given b1.

Once we know this distribution, predicting the synthetic image b̂2 is simply a

matter of finding the maximum a posteriori (MAP) estimate of p(b2|b1).

Unlike REPLICA, which estimates the synthetic image voxel-by-voxel, each

independent of the rest, SynthCRAFT estimates an entire image keeping note

of the fact that neighboring voxel intensities are correlated to each other and

are not completely independent. We show that SynthCRAFT is capable of
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most of the tasks that REPLICA is and provides comparable results. REPLICA

and SynthCRAFT attempt to solve the same problem. REPLICA is easy to

interpret and hence is very well-tuned for image synthesis tasks, as is evident

based on empirical testing. However, we believe that SynthCRAFT is a more

general, elegant, and a principled way to define and solve the image synthesis

problem and with some engineering effort, will replace REPLICA in the future.

We describe SynthCRAFT in Chapter 4.

In Chapter 5, we discuss the conclusions and implications of our image synthesis

techniques and contemplate future directions for our research.
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Chapter 2

REPLICA: Multi-resolution

Random Forest-based Regression

Synthesis

2.1 Introduction

In this chapter, we describe our intensity transformation-based MR image synthesis

framework. The synthesis problem is illustrated in Fig. 1.3 in Chapter 1. We assume

that the atlas image set, A = {a1, a2, . . . , an, . . . , ar} and the subject image set

B = {b1, b2, . . . , bn}, are such that each ai and corresponding bi are already intensity

standardized or can be standardized by a simple intensity scaling. The goal is to

synthesize the subject image b̂r, which has the same contrast as the atlas image ar.
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All previous and current image synthesis approaches [3, 4, 40, 43] also frame the image

synthesis problem similarly. Here we describe our solution, which shares some common

elements with some of these approaches.

We model the intensity transformation in our method as a nonlinear regression

in a feature space that predicts the intensity in the target modality. The choice of

feature space is crucial for nonlinear regression to work well. We desire a feature space

that provides an unambiguous mapping from itself to the target contrast intensities.

This means that two feature vectors that are close together in the feature space should

not ideally map to two different intensities in the target contrast. The T1w-T2w joint

histogram in Fig. 1.4 illustrates the necessity of an unambiguous mapping for typical

image synthesis tasks. To that end, we use local patches and additional context features

to form our feature space. We also wrap the nonlinear regression in a multi-resolution

framework similar to the ideas described by Hertzmann et al. [43]. The nonlinear

regression is learned using a regression ensemble based on random forests [47].

We call our approach Regression Ensembles with Patch Learning for Image Contrast

Agreement or REPLICA. Our approach is computationally much faster than existing

approaches and delivers comparable, if not better synthesis results. REPLICA can be

used to to synthesize FLAIR images, which had not been done previously by other

methods. REPLICA is also capable of synthesizing full-head images, as opposed to

skull-stripped images. Full-head images possess a lot of variability across subjects

and have been difficult synthesis targets. Additionally, we have demonstrated use
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of REPLICA in super-resolution and intensity standardization scenarios. Elements

of this work have appeared in previous conference publications [30, 48]. A previous

version of REPLICA was also used in Ψ-CLONE, described in Chapter 3 and in [45].

In this chapter, we provide a complete exposition of our multi-resolution approach,

which is the culmination of several previous publications [30, 45, 48]. We include more

in-depth experiments showcasing the efficacy of synthesis not only by performing

image comparison with real images but also by quantifying the results of further image

analysis on synthetic images and showing comparable results with real images. We

describe our method in Section 2.2 and results in Section 2.3. In the results section,

we show synthesis of T2w and FLAIR images, intensity standardization of SPGR and

MPRAGE modalities, and super-resolution of T2w and FLAIR images. Discussion,

conclusions, and future work is in Section 2.4. Parameter selection experiments are

described in Appendix 2.A.

2.2 Method

Let B = {b1, b2, . . . , bm} be a subject image set, imaged with pulse sequences

Φ1, . . . ,Φm. This set contains m images from m different pulse sequences such as

MPRAGE, FLAIR, DSE, etc. Let A = {a1, a2, . . . , am, ar} be the atlas collection

generated by the pulse sequences Φ1, . . . ,Φm (which are the same as those of the

subject images) and Φr, where Φr is the target pulse sequence that we want to
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synthesize from the subject set. The atlas collection can contain imaging data from

more than one individual but for simplicity in this description, we assume that there

is only one individual in the atlas.

Our goal is to synthesize a subject image b̂r that has the same tissue contrast as

the atlas image ar. We frame this problem as a nonlinear regression where we want to

predict the intensities of b̂r, voxel-by-voxel. This nonlinear regression is learned using

random forest regression [47] as described in detail below. Training data is generated

using the atlas image set by extracting feature vectors f(x) at voxel locations x in the

atlas image domain Ω. These features are paired with the voxel intensity ar(x) of the

atlas target modality to learn the intensity transformation.

2.2.1 Features

Generating a synthetic image of modality Φr from modalities Φ1, . . . ,Φm involves

calculating an intensity transformation that jointly considers features in these modal-

ities to predict the intensities generated by Φr. If we consider an individual voxel

intensity as the only feature then in most realistic image synthesis scenarios the

intensity transformation is not a one-to-one function between the input and target

modality voxel intensities. This is evident for the example of T1w and T2w images in

Fig. 1.4 in Chapter 1. The regression learned from such ambiguous data is bound to

be error-prone.

One way to reduce such errors is to add additional features associated with each
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voxel x ∈ Ω. Previous approaches like image analogies [43] and MIMECS [4] used

small image patches (usually 3 × 3 × 3 voxels centered on x) as features. Small

patches add some spatial context to a single voxel, but they are often unable to resolve

the ambiguity of a one-to-many mapping from feature space to the target modality

intensity. Registration-based approaches [3, 40] attempt to solve this issue by carrying

over the spatial context from the atlas images to the subject image via registration

under the assumption that after registration, the intensity transformation is simple

enough to be learned by using small patches. We address this problem in two ways,

first by using a multi-resolution framework and second by adding remote features

which we call context features.

2.2.1.1 Multi-resolution Features

For each image ai in the atlas set, we construct a Gaussian pyramid (using

σ = 1 voxel) on scales s ∈ {1, . . . , S}. Let the atlas images at scale s, be As =

{as1, . . . , asm, asr}. The first level (s = 1) corresponds to the original high resolution atlas

images, and each successive level is created by Gaussian smoothing and downsampling

the images by a factor of 2. These levels depicting the creation of training data are

shown in Figs. 3.1(a), (b), and (c). At the coarsest resolution of the Gaussian pyramid

(S = 3 is sufficient in most scenarios), the intensity transformation is simple and

can be learned using small p× q × r-sized 3D patches ps
i (x) extracted from images

asi , i ∈ {1, . . . ,m} and concatenated together to create ps(x) = [ps
1(x), . . . ,p

s
m(x)].
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Figure 2.1: A graphical description of the REPLICA algorithm. The task depicted
here involves predicting T2w images from T1w images. The left portion shows the
training for all scales. The trained random forests (RF) at each level are then applied
to the scaled versions of the input subject T1w image, starting from the coarsest scale
s = 3 to the finest scale s = 1. The feature extraction step extracts different features
at each level. Refer to the text for the notation.

(Generally, we set p = q = r = 3.) This step is illustrated in Fig. 3.1(c); the details of

training the random forest regression are described later in Section 2.2.2.

For all the scales 1 < s < S (which is just s = 2 in Fig. 3.1), the full feature

vector consists of two distinct parts. The first part is a small patch at voxel location

x from the image set As, which can be described by ps(x) = [ps
1(x), . . . ,p

s
m(x)]. The

second part is a small patch at x taken from as+1↑
r , the upsampled target image from
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one level lower resolution in the Gaussian pyramid, where upsampling is done via

trilinear interpolation. We denote this upsampled target patch by qs(x). These steps

correspond to stages (a) and (b) in Fig. 3.1. The patch qs(x) helps to disambiguate

regions of similar intensities by providing a low resolution estimate of the intensities

in the target modality Φr. The feature vector at levels 1 < s < S is the concatenation

of these two features: fs(x) = [ps(x),qs(x)].

2.2.1.2 High Resolution Context Descriptor

Although multi-resolution features can help to disambiguate the most confounding

intensity mappings, their use alone can yield overly smooth synthetic images due to

the information arising from the lower resolutions in the multi-scale pyramid. To

address this problem we introduce special context features that are used only at the

finest level in the pyramid (stage (a) in Fig. 3.1).

We assume that the images have been registered to the MNI coordinate system [49]

and are in the axial orientation, with the center of the brain approximately at the

center of the image. Let the voxel x be located on slice z, with the slice center at oz.

Thus the unit vector u = oz − x/∥oz − x∥ identifies the direction to the center of the

slice from voxel x.

We then define eight directions by rotating u by angles {0, π
4
, . . . , 7π

4
} about the

axis perpendicular to the axial slice (see Fig. 2.2). In each of these directions, at a

radius ri ∈ {r1, r2, r3, r4} we calculate the average intensities in cubic regions with
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x oz

r1

w1 r2

w2
r3

w3

r4

w4

u

Figure 2.2: High resolution context descriptor. The voxel x at which this descriptor
is calculated is at the center of this figure. The center of the slice oz is shown on
the right. The unit vector u is directed from x to oz and is shown in red. It is
rotated in increments of π/4 to identify the rest of the eight directions. At each radius
∈ {r1, r2, r3, r4}, along these eight different directions, we evaluate the mean of image
intensities within a 3D cubic region (depicted here as colored 2D squares). The cubic
widths {w1, w2, w3, w4} are also shown for a set of regions.

increasing cube widths wi ∈ {w1, w2, w3, w4}, respectively. In Fig. 2.2, we have shown

the voxel x at the center. The unit vector u pointing toward the slice origin oz is

shown in red. We also show the cubic regions over which we average intensities as

colored boxes at the eight orientations and four radii. Although they are shown as 2D

rectangles in the illustration, these regions are actually 3D cubes of sizes wi ×wi ×wi,
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where the center voxel of the region lies at the designated rotations and radii within

the axial slice of the voxel x.

This yields a 32-dimensional descriptor of the context surrounding voxel x at

the highest resolution. In our experiments, we have used the values w1 = 3, w2 =

5, w3 = 7, w4 = 9 and r1 = 4, r2 = 8, r3 = 16, r4 = 32 voxels, respectively. These

values were determined empirically. Since the head region is roughly spherical, this

feature can disambiguate patches from different locations of the brain slice based

on their near and far neighborhoods. We denote this feature vector as v(x). The

feature vector at the finest level in the pyramid (s = 1) is the concatenated feature

f1(x) = [p1(x),q1(x),v(x)], which is used to train the final random forest regression

stage to estimate the center voxel value a1r(x).

2.2.2 Training a Random Forest

We train a random forest regressor RFs at each level s to predict the voxel intensities

in the target modality at that level from the feature vectors at that level (the orange,

yellow, and green blocks in Fig. 3.1). A random forest regressor consists of an ensemble

of regression trees [42] with each regression tree partitioning the space of features into

regions based on a split at each node in the tree. Let Θq = {[f1; v1], . . . , [ft; vt]} be

the set of all training sample pairs at a node q in the tree. Here, fi ∈ RJ denotes

the feature vector (which can be any one of those in the multi-resolution pyramid as

described above) and vi denotes a value in the modality to be predicted (which is the

29



CHAPTER 2. REPLICA

value of the image to be predicted at the same level in the multi-resolution pyramid).

Let the mean of the target intensities of the samples at node q be v̄q. The nodal splits

are determined during training by randomly selecting one third of the features (i.e.,

one third of the indices j = 1, . . . , J of the feature vector) and then finding the feature

j in this subset together with a corresponding threshold τj that together minimize a

least squares criterion as defined in the following paragraph.

The squared distance (SD) from the mean of the target intensities at node q is

given by

SDq =
t∑

i=1

(vi − v̄q)
2 (2.1)

where t is the number of training samples at node q. This quantity is seen as a measure

of compactness of the target intensities in a node. If feature j and threshold τj are

selected to determine the split then the training data are split into a “left” subset

ΘqL(j, τj) = {[fi; vi]|∀i, fij ≤ τj} and a “right” subset ΘqR(j, τj) = {[fi; vi]|∀i, fij > τj}.

These training samples are then used in new left and right child nodes in the tree. In

particular, each of these child nodes has its own compactness given by

SDqL(j, τj) =

tL∑
i=1

(vi − v̄qL)
2 (2.2)

SDqR(j, τj) =

tR∑
i=1

(vi − v̄qR)
2 , (2.3)

where tL and tR are the number of samples in the left and the right child nodes

respectively and the target intensities vi are taken from their corresponding training
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samples. It is desirable that the data in each child node is maximally compact, which

can be achieved if j and τj are chosen as

(ĵ, τ̂j) = argmin
j,τj

{SDqL(j, τj) + SDqR(j, τj)} . (2.4)

This is the least squares criterion that determines node splits during training to create

each random forest regressor.

The growth of each tree is controlled by three factors: tp, tc, and ϵ.If a node has

fewer than tp training samples, it will not be split into child nodes (and it therefore

becomes a leaf node). If the optimum split of a given node leads to one of the

child nodes having fewer than tc training samples, then it will not be split (and it

likewise becomes a leaf node). We set tp = 2tc and tc = 5 in our experiments. If

SDq − (SDqL + SDqR) < ϵSDq then the node is not split (and it likewise becomes a

leaf node). We use ϵ = 10−6 in our experiments.

A master list of training data is created from the atlas data by sampling the

features in all tissues making sure that abnormal tissues (like white matter lesions) are

well-represented. Each RF regressor consists of sixty trees where each tree is learned

from bootstrapped training data, where bootstrapping is carried out by randomly

choosing N = 1× 105 training samples (with replacement) for each tree. Each trained

tree contains the feature j and threshold τj at each non-leaf node and the average

value of the target intensity at each leaf node. To use an RF regressor, the same
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feature vector is “fed” to each root node and each tree is traversed according to the

stored feature indices and thresholds until a leaf node is reached whereupon the tree

provides an intensity. The average intensity of all sixty trees is then formed as the

output of the regressor.

We summarize the training stages in the Algorithm 1.

Algorithm 1 REPLICA: Training

1: Data: Co-registered pair of atlas images at scale s = 1 (highest resolution), a1
1

and a2
1, rigidly aligned to the MNI space

2:

3: for scale s = 2 : S do
4: a1

s = GaussFilterAndDownsample2x(a1
s−1)

5: a2
s = GaussFilterAndDownsample2x(a2

s−1)
6: end for
7: for scale s = 1 : S do
8: if scale s == S then
9: Extract 3× 3× 3 patches from a1

s

10: Extract corresponding voxel intensities from a2
s, and create training data

11: Train a random forest RFs on the training data
12: else if scale s > 1 and s < S then
13: a2

s ↑ = upsample2x(a2
s+1)

14: Extract 3× 3× 3 patches from a1
s

15: Extract corresponding 3× 3× 3 patches from a2
s ↑

16: Concatenate corresponding patches to create a joint feature vector set
17: Extract corresponding voxel intensities from a2

s and create training data
18: Train a random forest RFs using the training data
19: else if scale s == 1 then
20: a2

s ↑ = upsample2x(a2
s+1)

21: Extract 3× 3× 3 patches from a1
s

22: Extract high resolution context descriptors from a1
s

23: Extract corresponding 3× 3× 3 patches from a2
s ↑

24: Concatenate all to create a joint feature vector set
25: Extract corresponding voxel intensities from a2

s, and create training data
26: Train a random forest RFs using the training data
27: end if
28: end for
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2.2.3 Predicting a New Image

Given a subject image set, a Gaussian image pyramid is constructed and at

each level s the subject image set is Bs = {bs1, bs2, . . . , bsm} and relevant features are

extracted. Starting from the coarsest level (s = 3), RFs is applied to synthesize the

target modality at the lowest resolution b̂Sr . This step is depicted in stage (d) of

Fig. 3.1. For levels s < S, s ≠ 1, b̂Sr is upsampled to the next level to create b̂S↑r , which

is a synthetic, up-sampled low resolution image. Feature vectors fs(x) = [ps(x),qs(x)]

are calculated at each voxel x at this level and RFs is applied to these to generate

b̂S−1
r (see stage (e) in Fig. 3.1). This process continues until s = 1. At s = 1, the

highest available resolution, feature vectors f1(x) = [p1(x),q1(x),v(x)] which includes

the high resolution context descriptor v(x) are calculated. The trained random forest

RF1 is applied to produce the final high resolution synthetic image b̂1r (stage (f) in

Fig. 3.1). The prediction algorithm is summarized in Algorithm 2.

We have provided a very general description of the REPLICA image synthesis

pipeline. Depending on the complexity of the application we might use a subset of

this pipeline. For example, when synthesizing images for which the input images

are already skull-stripped, the intensity mapping does not need the entire multi-

resolution treatment as the high resolution features are sufficient. REPLICA has a

number of free parameters that can be tuned to improve the resulting synthesis. We

performed extensive parameter selection experiments, the results of which are available

in Appendix 2.A. These parameters were set as follows, (a) number of trees (= 60),
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Algorithm 2 REPLICA: Prediction

1: Data: Subject image b1
1 rigidly aligned to the MNI space and trained random

forests RFs, for ∈ {1, . . . , S}
2:

3: for scale s = 2 : S do
4: b1

s = GaussFilterAndDownsample2x(a1
s−1)

5: end for
6: for scale s = 1 : S do
7: if scale s == S then
8: Extract 3× 3× 3 patches from b1

s

9: Predict b̂s2 by applying random forest RFs

10: else if scale s < S and s > 1 then
11: b̂s2 ↑ = upsample2x(b̂s+1

2 )
12: Extract 3× 3× 3 patches from b1

s

13: Extract corresponding 3× 3× 3 patches from b̂s2 ↑
14: Concatenate corresponding patches to create a joint feature vector set
15: Predict b̂s2 by applying random forest RFs

16: else if scale s == 1 then
17: b̂s2 ↑ = upsample2x(b2

s+1)
18: Extract 3× 3× 3 patches from b1

s

19: Extract high resolution context descriptors from b1
s

20: Extract corresponding 3× 3× 3 patches from b̂s2 ↑
21: Concatenate all to create a joint feature vector set
22: Predict b̂s2 by applying random forest RFs

23: end if
24: end for
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(b) number of samples in a leaf node (= 5), (c) size of local 3D patch (= 3× 3× 3),

(d) number of individuals in the atlas (= 1), (e) use of alternate atlas images (does

not affect synthesis), and (f) use of context and multi-scale features, the results of

which are shown in Section 2.3.2. For the remaining experiments, please refer to the

Appendix 2.A.

2.3 Results

In this section, we describe a variety of REPLICA applications. In Section 2.3.1

we describe results of T2w synthesis using REPLICA. In Section 2.3.2 we describe

a comparatively more challenging task of synthesizing full head T2w images (i.e.,

not skull-stripped) and show that REPLICA in its complete avatar (i.e., using the

multi-resolution framework) is able to achieve it better than competing algorithms. In

Section 2.3.3 we demonstrate the use of REPLICA to synthesize FLAIR images and

show that image segmentation using synthetic FLAIRs is comparable to that achieved

using real FLAIRs. In Section 2.3.4 we show intensity standardization between

SPGR and MPRAGE using REPLICA. Finally in Section 2.3.5, we demonstrate

example-based super-resolution using REPLICA.
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MPRAGE True T2w FUSION MIMECS REPLICA

(a) (b) (c) (d) (e)

Figure 2.3: Shown are (a) the input MPRAGE image, (b) the true T2w image, and
the synthesis results of (c) FUSION [3], (d) MIMECS [4], and (e) REPLICA (our
method). The lesion (green arrow) and the cortex (orange arrow) in the true image
are correctly synthesized by MIMECS and REPLICA, but not by FUSION. The dark
boundary just outside the cerebral tissue (yellow arrow) is incorrectly synthesized as
bright by MIMECS, but not by FUSION and REPLICA.

2.3.1 Synthesis of T2w Images

In this experiment, we synthesized T2w images from skull-stripped T1w MPRAGE

images taken from the Multi-Modal MRI Reproducibility Resource (MMRR) data [50].

The MMRR data consists of 21 subjects, each with two imaging sessions acquired

within an hour of each other. T2w images can be used as registration targets while

performing distortion correction on echo-planar images (EPI) images and also as

input to lesion segmentation algorithms. Therefore, if T2w images are absent, we

can use REPLICA to synthesize them. We compared REPLICA to the MIMECS

method [4] and a multi-atlas registration and intensity fusion method which we refer

to as FUSION [3]. We used the NiftyReg affine registration followed by free-form

deformation registration algorithm to drive the multi-atlas registration [51,52] and

implemented the intensity fusion as described in [3]. We used data from one randomly
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chosen subject as training for REPLICA and MIMECS and one image each from

five subjects as the atlases for FUSION. We set the parameters for FUSION to

β = 0.5 (weighting parameter) and κ = 4 (use the top 4 best patch matches to fuse);

refer to [3] for more details. For the remaining 16 × 2 = 32 MPRAGE images, we

synthesized T2w images using all three methods. The input MPRAGE images were

intensity standardized by scaling such that the white matter peak intensity in the

histogram is 1. Synthesis of skull-stripped T2w images can be achieved with an intensity

transformation that is captured well using just the high resolution features. Therefore

we do not use the entire multi-resolution framework for this application but only use

the high resolution context descriptors and a local patch (f(x) = [p1(x),v(x)]).

For evaluation of synthesis quality, we used PSNR (peak signal to noise ratio),

which is a mean squared error-based metric, UQI (universal quality index) [53], and

SSIM (structural similarity) [54], with respect to the ground truth images. UQI and

SSIM are more sensitive to perceptual differences in image structure than PSNR since

they take into account properties of the human visual system. For both UQI and

SSIM, a value of 1 indicates that the images are equal to each other; otherwise their

values lie between 0 and 1.

Visual comparison to ground truth images is one of the primary indications of

whether synthesis has been successful or not. Visually disparate synthetic images are

likely to generate different outputs when fed into image processing algorithms. We can

see from the results in Table 2.1 that REPLICA performs significantly better than the

37



CHAPTER 2. REPLICA

Table 2.1: Mean and standard deviation (Std. Dev.) of the PSNR, UQI, and SSIM
values for synthesis of T2w images from 32 MPRAGE scans.

PSNR UQI SSIM
Mean (Std) Mean (Std.) Mean (Std)

FUSION 52.73 (2.78)∗ 0.78 (0.02) 0.82 (0.02)
MIMECS 36.13 (2.23) 0.78 (0.02) 0.77 (0.02)
REPLICA 50.73 (2.67) 0.89 (0.02)∗ 0.87 (0.02)∗

* Statistically significantly better than either of the other two methods (p < 0.01) using a right-tailed test.

other methods for all metrics except PSNR. Figure 4.1 shows the results for all three

methods along with the true T2w image. FUSION ranks highest for PSNR, which

can be explained by the fact that unlike the cortex, large, homogeneous regions of

white matter have been reproduced quite well. However, it also produces anatomically

incorrect images, especially in the presence of abnormal tissue anatomy (lesions for

example) and the cortex (see Fig. 4.1(c)). MIMECS has a lower PSNR primarily due

to boundary voxels, which are mostly skull voxels that were incorrectly synthesized as

CSF (see Fig. 4.1(d)). Overall, REPLICA produces an image that is visually closest

to the true T2w image and has the highest UQI and SSIM values.

2.3.2 Synthesis of Whole Head Images

Synthesis of whole head images, i.e., head images that are not skull-stripped, is

challenging due to the high variability in tissues and tissue intensities. The intensity

transformation that needs to be learned is highly nonlinear and is generally one-to-many,

especially if small patches are used as features. Small patches are useful if there are
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MPRAGE 3× 3× 3 +context +multiscale Original T2w

(a) (b) (c) (d) (e)

(f) (g) (h)

(i) (j) (k) (l) (m)

(n) (o) (p)

Figure 2.4: (a) Original input MPRAGE, (b) REPLICA T2w synthesis using 3×3×3
patch as feature vector, followed by (c) with additional high resolution context
descriptor feature, and (d) using the full, multi-resolution REPLICA framework.
(e) shows the ground truth T2w image. In the next row we have the corresponding
difference images with respect to the real T2w image in (f), (g) and (h) respectively.
It is clear that using multi-resolution REPLICA produces a higher quality synthesis for
the challenging task of synthesis of full-head images. (i)-(p) Show the same images for
a more superior slice. The maximum intensity in these images is 255. The difference
images have a maximum intensity around 60.
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multiple input modalities capable of providing the necessary information to synthesize

extra-cerebral tissues, as [37] demonstrated by synthesizing CT images from input

ultrashort echo time (UTE) images. The two UTE images together provide enough

intensity information to differentiate the bone from soft tissues. In general, local patch

features can be adequate to accurately synthesize skull-stripped images, but additional

context features are needed when extra-cerebral tissues are included. Multi-resolution

and context features, as described in Section 2.2.1, provide additional information

about the location of a voxel within the brain, enabling better synthesis of these tissues.

This experiment demonstrates the impact of the these additional features. We use the

T1w MPRAGE images from the MMRR dataset [50] and synthesize corresponding

full-head T2w images. We used data from a randomly selected subject for training.

The atlas and subject images have the following specifications:

a1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0× 1.0×

1.2 mm3 voxel size),

a2: T2w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 0.82× 0.82× 1.5 mm3 voxel size).

b1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0× 1.0×

1.2 mm3 voxel size)

REPLICA parameters were set as follows: number of trees= 60, and tc = 5, tp = 2tc,

and ϵ = 10−6.
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PSNR UQI SSIM

Figure 2.5: PSNR, UQI, and SSIM as functions of the features and multi-resolution
framework of REPLICA.

We ran REPLICA with three different settings for input features: (a) only local

3× 3× 3 patches, (b) local patches + context features, and (c) local patches + context

features + multi-resolution framework. Using each of these settings, we synthesized

20× 2 = 40 synthetic images. Figure 2.4 shows a progression of REPLICA results for

a synthetic T2w image of a subject from the corresponding MPRAGE with both brain

and non-brain tissues using a 3× 3× 3 local patch (Figs. 2.4 (b), (j)), a combination

of the local patch and high resolution context descriptor (Figs. 2.4 (c), (k)), and

the full REPLICA multi-resolution framework (Figs. 2.4 (d), (l)). Figures 2.4 (f),

(g), (h), (n), (o), (p) also show the corresponding difference images with the ground

truth T2w image in Figs. 2.4 (e), (m). In this figure we show two slices, one from the

inferior head region with a high variability of tissue intensities and structures, and

another from a slightly superior region with more structured regions. This qualitative

comparison reveals that the full multi-resolution framework works best.

For a quantitative comparison, we calculated PSNR, UQI, and SSIM from the

40 synthetic images to compare the effect of these feature settings. UQI and SSIM
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Table 2.2: Mean and standard deviation (Std. Dev.) of the PSNR, UQI, and SSIM
values for synthesis of T2w images from 32 MPRAGE scans.

PSNR UQI SSIM
Mean (Std) Mean (Std.) Mean (Std)

3× 3× 3-patches 39.34 (2.70) 0.63 (0.02) 0.62 (0.02)
+context 45.68 (2.89) 0.69 (0.02) 0.67 (0.02)
+multiscale 49.69 (2.65)∗ 0.73 (0.02)∗ 0.70 (0.02)∗

* Statistically significantly better than either of the other two methods (p < 0.01) using a right-tailed test.

MPRAGE True T2w FUSION MIMECS REPLICA

(a) (b) (c) (d) (e)

Figure 2.6: (a) The input MPRAGE image, (b) the real T2w image, (c) FUSION
result, (d) MIMECS result, (e) REPLICA result. Note the synthesis errors in the
cortex for FUSION and in the ventricles for MIMECS.

were computed for individual slices and averaged over the number of slices. Boxplots

for these metrics are shown in Fig. 2.5. These plots show quantitatively that the

multi-resolution version of REPLICA is statistically significantly better (p < 0.01,

one-tailed t-test) than the other two approaches in synthesizing T2w images from

MPRAGE images when the whole head is present. These values are tabulated in

Table 2.2.

Further, we qualitatively compared REPLICA against MIMECS and FUSION for

this task. The results are shown in Fig. 2.6. At first glance the FUSION result (Fig. 2.6
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Subject T1w T2w PDw Real FLAIR Synth. FLAIR

(a) (b) (c) (d) (e)

Figure 2.7: Subject input images along with the synthetic and true FLAIR images.

(c)) looks appealing, but has similar errors in the cortex region as for skull-stripped

brain synthesis in Section 2.3.1. MIMECS uses a small 3× 3× 3-sized patch and is

unable to disambiguate between skull and CSF resulting in large errors, especially

in the ventricles (Fig. 2.6 (d)). The REPLICA result (Fig. 2.6(e)) looks visually

closer to the truth, although appears smoother in some regions due to dependence

on low-resolution information coming from the lower levels of the multi-resolution

framework.

This experiment showcases the capability of REPLICA to handle complex image

synthesis scenarios, with limited intensity information at its disposal.

2.3.3 Synthesis of FLAIR Images

In this experiment, we used REPLICA to synthesize a FLAIR image from T1w,

T2w, and PDw images. The FLAIR sequence is routinely used to image patients

with multiple sclerosis (MS) and other diseases. It is particularly useful to visualize

white matter lesions (WML) that are observed in MS patients. White matter lesions
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appear hyperintense in FLAIR images and can be easily delineated using automated

segmentation algorithms. The FLAIR sequence needs a long TI value and, therefore, is

generally acquired at a lower resolution for quicker scan time. FLAIR images also suffer

from artifacts, which result in hyperintensities that can be mistaken for lesions [16].

Missing FLAIR images can also pose hurdles in lesion segmentation, as most leading

lesion segmentation algorithms use FLAIR as an input modality [55–57]. Synthesizing

missing FLAIR images can help avoid these issues and enable segmentation and further

image analysis.

The atlas set we used for this experiment was:

a1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3 voxel

size),

a2: T2w image from the second echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms,

TE2 = 80 ms, 0.82× 0.82× 2.2 mm3 voxel size),

a3: PDw from the first echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms,

TE2 = 80 ms, 0.82× 0.82× 2.2 mm3 voxel size),

a4: FLAIR (3 T, TI = 11000 ms, TE = 68 ms, 0.82× 0.82× 2.2 mm3 voxel size)

The subject image set was:

b1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3 voxel

size)
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b2: PDw image from the first echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms,

TE2 = 80 ms, 0.82× 0.82× 2.2 mm3 voxel size)

b3: T2w image from the second echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms,

TE2 = 80 ms, 0.82× 0.82× 2.2 mm3 voxel size).

All the modalities were registered and resampled to the MPRAGE image. This

experiment did not need the multi-resolution framework as the image analysis takes

place on skull-stripped [58] images. The input MPRAGE, and DSE images were

intensity standardized by scaling such that the white matter peak intensity in the

histogram was 1. We also tweaked the prediction of the decision trees in the random

forest ensemble in this experiment. Instead of calculating the mean of the sample

predictions in a single leaf, we calculated the mode. Calculating the mean resulted

in oversmooth images, especially at the lesion-WM boundaries, which resulted in

overestimation of lesion size by the segmentation algorithm. Using the mode results

in crisper edges and better lesion segmentation. Input images along with the real and

synthetic FLAIR images are shown in Fig. 2.7.

We used our in-house MS patient image dataset with 125 images belonging to 84

subjects, with some subjects having images acquired longitudinally. We compared

the synthesized images with existing true images using image similarity metrics (see

Table 2.3). These values indicate that the synthetic FLAIR images are visually

similar to the corresponding real FLAIR images. FLAIR synthesis results using

FUSION (Figs. 2.8(c), (h)), MIMECS (Fig. 2.8(d), (i)) and REPLICA (Fig. 2.8(e),
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Table 2.3: Mean (Std. Dev.) of PSNR (in decibels), UQI, and SSIM values over 125
FLAIR images synthesized by REPLICA.

PSNR UQI SSIM
Mean (Std) Mean (Std.) Mean (Std)

FUSION 18.05 (0.47) 0.57 (0.04) 0.60 (0.04)
MIMECS 16.22 (3.10) 0.81 (0.03) 0.57 (0.05)
REPLICA 21.73 (1.95)∗ 0.84 (0.03)∗ 0.81 (0.03)∗

* Statistically significantly better than either of the other two methods (p < 0.01) using a right-tailed test.

Orig. FLAIR FUSION MIMECS REPLICA

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.8: Visual comparison of FUSION, MIMECS and REPLICA for the FLAIR
synthesis task. The two rows show images from different subjects. (a) and (e) real
FLAIRs, (b) and (f) FUSION results, (c) and (g) MIMECS results, (d) and (h)
REPLICA results.

(j)) for two different subjects can be compared visually with the corresponding real

FLAIR images. FUSION was run with the same parameters as for T2w synthesis and

46



CHAPTER 2. REPLICA

Table 2.4: Mean (Std. Dev.) of Dice coefficients based on LesionTOADS segmenta-
tion of the real FLAIR and synthetic FLAIR over 125 images.

Algorithm WM GM CSF WML

LesionTOADS 0.97 (0.01) 0.99 (0.0005) 0.96 (0.01) 0.46 (0.22)

T1w Orig. FLAIR Synth. FLAIR

(a) (b) (c)

(d) (e)

Figure 2.9: (a) Input MPRAGE for LesionTOADS segmentation, (b) original FLAIR,
(c) synthetic FLAIR generated from T1w, T2w and PDw images, (d) LesionTOADS
segmentation using real FLAIR + MPRAGE, (e) LesionTOADS segmentation using
synthetic FLAIR + MPRAGE.

it is unable to faithfully construct a synthetic image that is close enough to the ground

truth. FUSION is based on registration and intensity fusion of multiple atlas images;
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it cannot synthesize lesion intensities at lesion locations if those intensities are not

present in the atlas images at those exact locations. The presence of lesions also affects

the quality of the registrations itself, thus leading to a worse than expected result.

MIMECS works better than FUSION but has errors synthesizing large lesion areas

and very small lesions. Overall, REPLICA produces the most visually acceptable

synthetic FLAIR image. Quantitative comparison with MIMECS and FUSION shown

in Table 2.3 confirms that REPLICA produces a better synthetic FLAIR.

Next, we used the synthetic FLAIR images as inputs to a tissue segmentation

algorithm. If synthesis has been done correctly, the segmentation algorithm should

behave identically for real and synthetic images as inputs. To test this, we used the

LesionTOADS algorithm [55]. LesionTOADS uses a T1w image and a corresponding

FLAIR image to generate a multi-class, topologically correct segmentation in the

presence of lesions. We compared the overlap of segmentations obtained using synthetic

FLAIR images to those obtained using real FLAIR images in terms of Dice coefficients.

The Dice coefficients for WM, GM, CSF, and WML classes are shown in Table 2.4.

Figure 2.9 shows the segmentations by LesionTOADS on real and synthetic FLAIR

images. The overlap is high for WM, GM, and CSF; however it is relatively low for

the WML class. The lesions are small and diffuse and even a small difference in the

overlap can cause a low value for the Dice coefficient [56]. So we looked at the lesion

volumes as provided by LesionTOADS for real and synthetic FLAIR images.

To understand how different the lesion volumes are for the synthetic images
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as compared to the real images, we created a Bland-Altman plot [59] for these

measurements (see Fig. 2.10). If y1 and y2 are two measurements by two different

methods consisting of n samples each, then the Bland-Altman plot is a scatter plot of

y1 − y2 versus (y1 + y2)/2. The measurements are considered to be interchangeable if

0 lies within ±1.96σ where σ is the standard deviation of y1 − y2. Figure 2.10 shows

the Bland-Altman plot where y1 are the lesion volumes for synthetic FLAIR images

and y2 are the lesion volumes for real FLAIR images, as produced, in both cases, by

LesionTOADS. Even though the difference (y1 − y2) is not zero-mean (p > 0.05 using

a one sample t-test), both the measurements can be used interchangeably because 0

lies within ±1.96σ in the plot [59].

Figure 2.10: A Bland-Altman plot of lesion volumes for synthetic FLAIRs vs
lesion volumes of real FLAIRs. Since zero lies within the ±1.96σ range, these two
measurements of the same quantity are interchangeable.

Next, we compared lesion volumes with those estimated by an expert manual

rater. We can consider volumes produced by a manual rater to be an additional
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method of measurement, and compare it with LesionTOADS lesion volumes on real

and synthetic FLAIRs in a Bland-Altman plot in Fig. 2.11. In Fig. 2.11, we show the

Bland-Altman plots of manual lesion volumes vs LesionTOADS lesion volumes using

real FLAIRs (blue) and LesionTOADS lesion volumes using synthetic FLAIRs (red).

The bold blue and red lines depict the mean value whereas the dashed lines depict

their respective ±1.96σ ranges. This plot shows that LesionTOADS lesion volumes

of real FLAIR images can be interchangeably used with the manual lesion volumes,

validating the choice of LesionTOADS as a segmentation algorithm. More importantly,

the LesionTOADS lesion volumes from the synthetic FLAIR images are marginally

closer to the manual volumes as evinced by the proximity of the mean.

Manual volumes were obtained from real FLAIRs, so ideally LesionTOADS volumes

on real FLAIRs should have been closer to the manual volumes. However, we observe

the opposite. A speculative explanation for this observation is as follows: The process

of manual delineation relies on the ability of the human rater to account for the

intensity variation observed in real FLAIRs and provide a consistent segmentation

across subjects. Synthetic FLAIRs on other hand are already consistent in their

intensity characteristics because all of them are generated from a fixed set of atlas

FLAIRs. Thus LesionTOADS results on synthetic FLAIRs are less affected by the

variations than real FLAIRs, thus bringing them closer to the manual delineations. A

manually segmented set of synthetic FLAIRs would help us in validating this assertion.

Synthesis of FLAIR images is an important application and one that has not been
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demonstrated successfully before. REPLICA is the first algorithm to create usable

FLAIRs from input T1w, T2w, and PDw images.

Figure 2.11: The red Bland-Altman plot is for lesion volumes as measured by
a manual rater versus LesionTOADS lesion volumes on synthetic FLAIRs. The
blue Bland-Altman plot is for lesion volumes as measured by a manual rater versus
LesionTOADs lesion volumes on real FLAIRs. This plot shows that the lesion volumes
obtained using the synthetic FLAIRs are marginally closer to those found by the
manual rater as the red mean line is closer to zero.

2.3.4 Intensity Standardization

Tissue segmentation and cortical reconstruction in MRI are generally reliant

on T1w images acquired with pulse sequences like MPRAGE and SPGR [10,60,61].

However, most segmentation algorithms are not robust to variabilities in the T1w image

contrasts [62]. Intensity standardization of different contrasts has been proposed to

alleviate this problem [2,62,63]. Image synthesis can be used to standardize intensities

by creating synthetic, standardized images from given images. These synthetic images

can belong to a given, reference modality, on which the algorithm behavior is well-
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understood. We demonstrate such an intensity standardization application using the

Baltimore Longitudinal Study of Aging (BLSA) dataset [64]. In this experiment, we

used a subset of the dataset, consisting of 82 scans of 60 subjects, some of which

are longitudinal acquisitions. Each scanning session was carried out on a Philips 1.5

T scanner and has an SPGR (see Fig. 2.12(a)) and an MPRAGE (see Fig. 2.12(b))

acquisition from the same session. We chose this dataset as it can mimic the scenario

of the multi-site data acquisition where protocols differ across the sites. The input

SPGR images were intensity standardized by scaling such that the white matter peak

intensity in the histogram is 1. We use an in-house implementation of the probabilistic

atlas-driven, EM-based segmentation algorithm [61], which we refer to as AtlasEM.

AtlasEM provides us with a 4-class segmentation, the classes being sulcal CSF, GM,

WM, and ventricles. We segmented the SPGR and the MPRAGE images using

AtlasEM. In an ideal scenario, where the algorithm is impartial to the underlying

T1w input, the segmentations should be identical. However, as we can observe in

Figs. 2.12(e), (f), the segmentations are quite different. We used REPLICA to generate

a synthetic MPRAGE from input SPGR images, and ran AtlasEM segmentations on

the synthetic MPRAGEs. The atlas set used for this experiment was:

a1: SPGR image (1.5 T, TR = 35 ms, TE = 5 ms, α = 45◦, 0.938× 0.938× 1.5 mm3

voxel size),

a2: MPRAGE (1.5 T, TR = 6.92 ms, TE = 3.4 ms, α = 8◦, 0.938× 0.938× 1.5 mm3

voxel size).
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The subject images were:

b1: SPGR image (1.5 T, TR = 35 ms, TE = 5 ms, α = 45◦, 0.938× 0.938× 1.5 mm3

voxel size).

The synthesis did not need the multi-resolution framework as we worked with skull-

stripped images because the final segmentation takes place on skull-stripped [58]

images. We used the synthetic MPRAGE as an input for AtlasEM. Our goal is

to show that the segmentations are closer to those obtained by a real MPRAGE.

Figure 2.12(c) shows the REPLICA-generated synthetic MPRAGE and Fig. 2.12(f)

shows the segmentation for the same. Visually, it is closer to the segmentation obtained

from the real MPRAGE Fig.(2.12(e)), especially at the CSF-GM interface.

We also looked at tissue volumes provided by AtlasEM on all three sets of images,

SPGR, MPRAGE, and synthetic MPRAGE. As stated earlier, if the AtlasEM algorithm

were robust to the input modality, the tissue volumes for a particular tissue should

be identical for SPGR and MPRAGE. In Fig. 2.13 (a)–(d), we show scatter plots

for the tissue volumes obtained on real MPRAGEs (x-axis) and those obtained for

SPGRs (blue) and synthetic MPRAGEs (red). We also show the least square line

fits to the scatter plots (blue for SPGR, red for synthetic MPRAGE). In the ideal

scenario, the least square line fits should be close to the x = y line. We can see that

for sulcal CSF (Fig. 2.13(a)), GM (Fig. 2.13(c)), and WM (Fig. 2.13(d)), synthetic

MPRAGE is closer to the identity line than SPGR. The ventricle volumes are similar

in both the modalities (Fig. 2.13(b))

53



CHAPTER 2. REPLICA

SPGR MPRAGE Synth. MPRAGE

(a) (b) (c)

(d) (e) (f)

Figure 2.12: (a) SPGR, (b) MPRAGE, (c) Synthetic MPRAGE generated from the
SPGR. (d–f) their respective AtlasEM segmentations. The SPGR segmentation is
quite different from the MPRAGE one. The synthetic MPRAGE tries to bridge this
difference.

This experiment is a validation scenario for a large multi-center, multi-scanner

MRI study, where images obtained from two different scanners can lead to differences

in image segmentations. We have used REPLICA to standardize these datasets and

reconcile their segmentation results, enabling scientific analyses of them together.
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(a) (b)

(c) (d)

Figure 2.13: (a) CSF AtlasEM volume scatter plot for SPGR vs MPRAGE and
synthetic MPRAGE vs MPRAGE, (b) Ventricles AtlasEM volumes, (c) GM AtlasEM
volumes, and (d) WM AtlasEM volumes. The blue scatter plots are of volumes observed
in SPGR vs those in MPRAGE. The red scatter plots are of volumes observed in
synthetic MPRAGE vs those in MPRAGE. The black line indicates the identity
transform x = y.

2.3.5 Super-resolution using REPLICA

During a clinical or research scan, not all pulse sequences are acquired at the same

resolution. In order to perform multimodal analysis, it is necessary to align the data
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from different modalities in a common reference frame and at a common resolution.

Super-resolution algorithms enhance the resolution of low resolution data. There exists

a large body of research on super-resolution techniques in general and also specific

to MRI. These include pre-processing [65, 66] and post-processing [1, 24, 31, 67–70]

techniques, a subset of which is example-based super-resolution. Initially proposed for

MR images by Rousseau [24], example-based methods leverage the high resolution

information extracted from a high resolution (HR) image—an MPRAGE, for example—

in conjunction with a low resolution (LR) input image—corresponding T2w image—to

generate a super-resolution (SR) version of the LR image. A number of approaches

have followed up on this idea by using self-similarity [1] and a generative model [32].

We have applied REPLICA to this problem previously [48]. Here we perform additional

experiments on larger datasets and show segmentation improvements due to super-

resolution.

We used REPLICA to synthesize super-resolution images from a joint input of LR

and HR images. In the first experiment, we validated our approach on real data by

generating super-resolution images of low resolution T2w images and comparing them

with known high resolution T2w images.

2.3.5.1 T2w Super-resolution

For this experiment, the atlas set consisted of:

a1: HR MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.1 ×
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1.1× 1.5 mm3 voxel size),

a2: LR T2w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.1× 1.1× 1.5 mm3 voxel size, downsampled to 1.1× 1.1× 4 mm3

and interpolated (trilinear) back to HR) .

a3: HR T2w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.1× 1.1× 1.5 mm3 voxel size),

The subject set includes:

b1: HR MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.1 ×

1.1× 1.5 mm3 voxel size),

b2: LR T2w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.1× 1.1× 1.5 mm3 voxel size, downsampled to 1.1× 1.1× 4 mm3

and interpolated (trilinear) back to HR) .

Table 2.5: Mean PSNR (dB) and standard deviation for each of three methods
across 40 scans. The three methods are nearest neighbor (NN) and trilinear (TL)
interpolation, b-spline (BSP) and our method—REPLICA. The state-of-the-art self
similarity based super-resolution (SSS) [1] failed to run on any of the real data. We
made several attempts to transform the real data into a usable form for SSS, which
did not help.) * denotes statistically significantly better than either of the other two methods (α level of 0.01)
using a right-tailed test.

Mean PSNR (Std. Dev.)

NN TL BSP REPLICA
21.26 (0.73) 22.81 (0.72) 22.63 (0.70) 26.51 (0.85)∗

The feature set includes 3D patches concatenated from the HR MPRAGE and LR

T2w images, and the dependent variable is the intensity of the corresponding center
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(a) (b)

(c) (d)

Figure 2.14: Shown here are (a) HR T1w image with 1.5 mm slice thickness, (b) HR
T2w image with 1.5 mm slice thickness, (c) LR T2w image with 4 mm slice thickness,
upsampled using cubic b-splines, and (d) SR T2w image using REPLICA on LR T2w
of slice thickness 4 mm.

voxel of the HR T2w image. The training is done on the atlas images and the learned

regression is applied to the features extracted from the subject images to produce a

super-resolution T2w image. We used 20 subjects of the MMRR dataset [50], each

with two imaging sessions, making it 40 scans. One subject was used for training. We

synthesized the super-resolution T2w images and compared them to the existing original

HR T2w using PSNR as a metric. Table 2.5 shows the PSNR values, compared against

nearest neighbor, trilinear, and cubic b-spline interpolation methods. Figure 2.14

shows the original input HR T1w MPRAGE, the ground truth HR T2w image, the
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result of upsampling using b-spline interpolation, and the REPLICA result. The

improvement in resolution is visible when compared against the upsampled image. We

tried to compare against the self-similarity method described in [1] but were unable

to run it despite our best efforts. REPLICA was consistently superior in a previous

comparison we published in [48] on the Brainweb phantom data.

2.3.5.2 FLAIR Super-resolution

In this experiment we applied REPLICA to generate a super-resolution (SR) FLAIR,

which along with a HR MPRAGE, should provide a better tissue segmentation than a

LR FLAIR and HR MPRAGE. We used 13 subjects from our in-house MS dataset.

The atlas set for this experiment was:

a1: HR MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3,

resampled to 1× 1× 1 mm3 voxel size),

a2: LR FLAIR (3 T, TI = 11000 ms, TE = 68 ms, 0.82× 0.82× 2.2 mm3 voxel size,

resampled to 1× 1× 4 mm3) interpolated back to HR (trilinear),

a3: HR FLAIR (3 T, TI = 11000 ms, TE = 68 ms, 0.82× 0.82× 2.2 mm3 voxel size,

resampled to 1× 1× 1 mm3)

The subject set was:

b1: HR MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3,

resampled to 1× 1× 1 mm3 voxel size),
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b2: LR FLAIR (3 T, TI = 11000 ms, TE = 68 ms, 0.82× 0.82× 2.2 mm3 voxel size,

resampled to 1× 1× 4 mm3, interpolated back to HR (trilinear))

We ran the LesionTOADS [55] segmentation algorithm on three cases for each

subject: (a) HR MPRAGE + LR FLAIR; (b) HR MPRAGE + SR FLAIR; (c)

HR MPRAGE + HR FLAIR. The last case acts as the ground truth for how the

segmentation algorithm should perform on the best case data. We aim to show that

the tissue segmentation using SR FLAIR is closer to that achieved using HR FLAIR,

than using LR FLAIR. Figures 2.15 (d), (k) show the super-resolution results, the LR

FLAIR images are shown in Figs. 2.15 (b), (i), and the HR FLAIR images in Figs. 2.15

(c), (j). Visually it is apparent that the lesion boundaries are more visible on the SR

FLAIR than on the LR FLAIR. The corresponding LesionTOADS segmentations are

shown in Figs. 2.15 (e)–(g) and Figs. 2.15 (l)–(n). The lesion boundaries as well as

the cortex is overestimated when a LR FLAIR is used. These errors are not visible on

the segmentation obtained using SR FLAIR. The corresponding HR MPRAGE slices

are shown in Figs. 2.15 (a) and (h), respectively.

We attempted to compare against the state-of-the-art self similarity based super-

resolution (SSS) [1] failed to run on any of the real data. We made several attempts to

transform the real data into a usable form for SSS, but those did not help. We looked

at lesion volumes as produced by LesionTOADS for all three cases for 13 subjects.

Figure 2.16 shows the lesion volumes produced for SR FLAIR are more similar to the

ones produced by HR FLAIR.
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MPRAGE LR FLAIR HR FLAIR SR FLAIR

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

Figure 2.15: Coronal slices of: (a) HR MPRAGE, (b) LR FLAIR, (c) HR FLAIR,
(d) SR FLAIR, followed by coronal slices of LesionTOADS lesion segmentations of (e)
HR MPRAGE + LR FLAIR, (f) HR MPRAGE + HR FLAIR, and (g) HR MPRAGE
+ SR FLAIR. Sagittal slices of: (h) HR MPRAGE, (i) LR FLAIR, (j) HR FLAIR, (k)
SR FLAIR, followed by sagittal slices of LesionTOADS lesion segmentations of (l) HR
MPRAGE + LR FLAIR, (m) HR MPRAGE + HR FLAIR, and (n) HR MPRAGE +
SR FLAIR.
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Figure 2.16: The x-axis axis denotes subject IDs. The y-axis denotes the lesion
volumes provided by LesionTOADS in mm3. The green plot shows lesion volumes
acquired by LesionTOADS on HR FLAIR+HR MPRAGE. The blue plot shows
LesionTOADS LR FLAIR lesion volumes, and the red plot shows LesionTOADS SR
FLAIR lesion volumes. Notice that the green plot is closer to the red plot than the
blue plot for most of the subjects.

Thus, using REPLICA we can improve the resolution of all the acquired images to

the one image that is acquired at the highest resolution. Improving resolution enables

improved segmentation and further image processing.

2.4 Summary and Discussion

We have described a new image synthesis algorithm called REPLICA. We have

shown that REPLICA demonstrates significant improvement in image quality over

other state-of-the-art synthesis algorithms (Section 2.3.1). We have also described

applications, where image synthesis in general and REPLICA in particular, can be

beneficial as a preprocessing step for subsequent image processing steps.
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The T2w synthesis for full-head images described in Section 2.3.2 also highlights

the capability of REPLICA to handle complex image synthesis scenarios, with limited

intensity information at its disposal. To our knowledge, REPLICA is the first intensity

transformation-based synthesis approach to do this.

Synthesis of FLAIR images is a key application (Section 2.3.3) that has not been

demonstrated before; this process can be useful if FLAIR images were not acquired, if

the acquired FLAIR images are corrupted, or if higher-resolution FLAIR images are

desired.

We have also demonstrated the use of REPLICA for intensity standardization

between two T1w modalities such as SPGR and MPRAGE in Section 2.3.4. This

example mimics the scenario of a typical large multi-center, multi-scanner MRI study,

where images obtained from two different scanners can lead to differences in image

segmentations. REPLICA can be used to standardize these datasets and bridge the

gap between their respective segmentation results, enabling scientific results with

higher statistical power.

In Section 2.3.5 we used REPLICA to perform example-based super-resolution.

The resulting super-resolution images provided a better segmentation than available

low resolution ones. An MRI scanning session almost always includes scans which are

of heterogenous quality, especially in terms of voxel resolution. Using this method, we

can improve the resolution of all the acquired images to the one image that is acquired

at the highest resolution, thus immediately improving the following image analysis.
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This can also be extended to different subjects by super-resolving available images to

a common resolution to provide more consistent image analysis across subjects.

REPLICA is computationally fast. Training an ensemble can take up to 20 minutes,

but needs to be done only once. With (easy) parallelization over eight cores, synthesis

of a 256× 256× 173 image takes less than a minute on a 3 GHz computer. Given the

typical times of neuroimaging pipelines (usually many hours), this makes the use of

REPLICA as a preprocessing step quite feasible.

REPLICA has some limitations that should be addressed in the future. Since the

predicted value of a random forest is the average of the results of all trees (each of

which is an average of at least five values), the synthetic images often appear to have

lower noise and are slightly smoother than their real counterparts. Lower noise may

benefit algorithms but reduction in resolution is not typically beneficial. In a previous

publication we have demonstrated super-resolution as an application of REPLICA [48],

so there may be a relatively straightforward way to enhance resolution in the exact

amount needed to offset the inherent loss of resolution due to averaging. Also, we used

the mode instead of the average in certain applications, but this is also an empirical

strategy and not guaranteed to address the problem. Another limitation concerns

the features that are used to train REPLICA. Although our features are sensible

and effective for the applications we have explored, they are nevertheless empirically

selected and they may not be optimal for these tasks or new scenarios that may be

encountered in the future.
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The development of REPLICA has been driven by empirical choices. The nonlinear

regression using random forests, predicts a synthetic image voxel-by-voxel, each of them

independent of the other. However, it is known that voxels in medical images (and

natural images) have neighborhood dependencies. Two neighboring voxels are more

likely to have similar intensities. The regular anatomy can lead to many more regional

dependencies that are not modeled by REPLICA. REPLICA does not provide a

probabilistic interpretation of its result. It is not apparent if the resulting synthetic

image is “optimal” by any well-defined criterion. We describe our attempt to create

such a probabilistic framework, SynthCRAFT, which is a discriminative model of

image synthesis, in Chapter 4.

REPLICA operates on the fundamental assumption that the atlas images ai have

the same acquisition parameters as the input subject images bi, or they can be intensity

standardized using a simple transform, for example linear or piecewise linear. However,

this is not always the case. The atlas data is a very specialized collection of high

quality images from a variety of pulse sequences. More often than not, the subject data

is not going to be acquired from the same imaging protocol or even the same scanners.

If the atlas and subject images are not intensity standardized well, the training data

is not going to be representative of the test data. No regression algorithm is robust

enough to handle this scenario gracefully and all supervised image synthesis algorithms,

including REPLICA will fail to produce the desired results. To solve this problem,

we have developed Ψ-CLONE, a framework to standardize the subject images to the

65



CHAPTER 2. REPLICA

atlas images by estimating the pulse sequence parameters used to acquire the subject

images and then perform synthesis via regression. In this framework, our atlas image

set also contains maps of intrinsic NMR parameters, in addition to the MR images.

We describe Ψ-CLONE in depth in the next chapter.

In conclusion, the REPLICA image synthesis method was described and shown to

be effective in medical image processing tasks. REPLICA was shown to be beneficial

when images are missing or corrupted for subsequent processing steps. It is a simple,

fast, and effective approach that can be readily employed as a preprocessing step in

many neuroimage processing pipelines.
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2.A Parameter Selection for REPLICA

The REPLICA framework has a number of free parameters that can be tuned to

improve the resulting synthesis. In this section we discuss and justify our choice of

the following parameters: (a) number of trees, (b) number of samples in a leaf node,

(c) number of training samples (d) size of local 3D patch, (e) use of more than one

individual in the atlas, (f) use of alternate atlas images.

For this task, we used T1-w MPRAGE images from the publicly available MMRR

dataset [50]. The MMRR data consists of 21 subjects, each with two imaging sessions

acquired within an hour of each other. The task involved synthesizing T2w images

of the DSE sequence from the corresponding T1-w MPRAGE images. We used skull-

stripped MPRAGE images from both sessions of 20 subjects and synthesized their

corresponding T2w images using REPLICA. We used one subject for training. The

atlas and subject images have the following specifications:

a1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0× 1.0×
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1.2 mm3 voxel size),

a2: T2w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 0.82× 0.82× 1.5 mm3 voxel size).

b1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0× 1.0×

1.2 mm3 voxel size)

For evaluation of synthesis quality, we used PSNR (peak signal to noise ratio),

which is a mean squared error-based metric, UQI (universal quality index) [53], and

SSIM (structural similarity) [54]. UQI and SSIM are more sensitive to perceptual

differences in image structure than PSNR since they take into account properties of

the human visual system. A value of 1 for both UQI and SSIM indicates that images

are equal to each other; otherwise their values lie between 0 and 1.

2.A.1 Number of Trees

In this experiment, we varied the number of trees used in the random forest. The

feature vector for this experiment was f1(x) = [p1(x),v(x)], where p1(x) is the local

3 × 3 × 3 patch at the highest resolution and v(x) is the high resolution context

descriptor, calculated at voxel x. Each tree in the random forest was grown until there

were no fewer than five samples in a leaf node, i.e., tc = 5, tp = 2tc, and ϵ = 10−6.

We successively changed the number of trees from the set {1, 10, 30, 60, 150}. The

resulting synthetic images were compared against the ground truth acquired images
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using PSNR, UQI, and SSIM, as shown in Fig. 2.A.1. Each box plot is generated

from metrics calculated over 20 × 2 = 40 synthetic images. There is a statistically

significant increase (p < 0.05 two-tailed t-test) in these metrics between the number

of trees = 1 to the number of trees = 10. However, although the scores improve with

an increasing number of trees, after 30 trees the values are not statistically different.

To keep a suitable balance between performance and computation time, we used 60

trees in all subsequent experiments.

PSNR UQI SSIM

Figure 2.A.1: Box plots for PSNR, UQI, and SSIM values obtained by comparing
the synthetic REPLICA-generated images with the ground truth.

2.A.2 Number of samples in leaf nodes

The number of samples in each leaf node can have a substantial effect on the

performance of a random forest. Here, we experiment with tc, the minimum number

of samples in leaf nodes. Keeping other factors that affect tree depth as tp = 2tc and

ϵ = 10−6, if tc is made larger then the tree stops growing earlier and the leaf nodes

have more values to average as the output of the tree. To assess the quantitative
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impact of this parameter, we varied tc in the set {5, 20, 50, 200, 1000} and used the

feature vector f1(x) = [p1(x),v(x)], where p1(x) is the local 3× 3× 3 patch at the

highest resolution and v(x) is the high resolution context descriptor. We fixed the

number of trees to 60.

From the plots in Fig. 2.A.2, we can see that the performance metrics decrease

slightly as tc increases, but the change is not statistically significant. Since it does not

affect computation time much, we set tc = 5 in all remaining experiments.

PSNR UQI SSIM

Figure 2.A.2: Synthesis performance as a function of tc.

2.A.3 Number of training samples

The number of samples used for training REPLICA can affect the quality of

synthesis. Ideally, synthesis quality should improve with an increasing number of

training samples. However due to computational constraints such as limited available

memory and a finite amount of training time, we need to choose a value that balances

the computational burden and synthesis quality. The training data is generated by

sampling foreground voxels of the atlas image set and calculating the features at
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these voxels. A typical atlas image has ∼ 107 foreground voxels. We cannot use

all of them as memory is limited. We increase the number of training samples in

the set {103, 104, 105, 2 × 105, 5 × 105, 106}. The feature vector for this experiment

was f1(x) = [p1(x),v(x)], where p1(x) is the local 3 × 3 × 3 patch at the highest

resolution, and v(x) is the high resolution context descriptor. The number of trees

was fixed to 60 and tc = 5, tp = 2tc, and ϵ = 10−6. We calculated PSNR, UQI and

SSIM from comparison with the ground truth images, the boxplots of which are shown

in Fig 2.A.3. All the performance metrics increase as number of training samples

are increased from 103 to 105. The change is statistically significant for UQI and

SSIM, but not PSNR. The metrics plateau after 105 samples. The training times and

memory requirements were obtained from a 16 core, 3.42 GHz machine with 193 GB

memory. These are shown in Table 2.A.1. Based on the synthesis performance and the

computational resources available in a realistic scenario, we chose number of samples

to be 105 in our experiments.

Table 2.A.1: Time and memory requirements of training REPLICA as function of
number of training samples

No. of samples Time (seconds) Memory (GB)

103 0.9 2.6
104 1.2 2.8
105 13.2 3.9

2× 105 27.3 6.7
5× 105 79.0 11.3
106 194.2 18.7
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PSNR UQI SSIM

Figure 2.A.3: As number of training samples increases, all metrics improve but
plateau later. UQI and SSIM improve statistically significantly from 1e3 to 1e5, but
not PSNR.

2.A.4 Additional Atlases

In this experiment we keep the number of training samples the same, but pick

these from a different number of atlases (individuals), from 1–4. We synthesize T2w

images from MPRAGE images as in previous experiments. The feature vector for this

experiment was f1(x) = [p1(x),v(x)], where p1(x) is the local 3× 3× 3 patch at the

highest resolution, and v(x) is the high resolution context descriptor. The number

of trees was fixed to 60 and tc = 5, tp = 2tc, and ϵ = 10−6. Since we used data from

four subjects in this experiment, the box plots were generated using only 17× 2 = 34

synthetic images.

The image quality metrics box plots in Fig. 2.A.4 show that the PSNR increases

significantly (2-sample t-test, p < 0.05) when the number of atlases increases from 1

to 2, but not after. UQI and SSIM do not reflect a similar improvement. Thus, for

the task of synthesizing normal anatomy images, use of one individual as the atlas is

sufficient.
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PSNR UQI SSIM

Figure 2.A.4: Box plots for all the metrics when an increasing number of atlases
are used. PSNR for number of atlases=1 is significantly different than the rest of the
atlases (p < 0.05) using the two-sample t-test. However other metrics and further
increase in number of atlases do not show any significant differences.

2.A.5 Using Different Atlas Sets

Although one atlas is sufficient for synthesis of normal anatomy, there may be

differences in which subject is chosen as the atlas. In this experiment, we used the

same four individuals as in the previous section to evaluate the impact of this difference.

The feature vector for this experiment was f1(x) = [p1(x),v(x)], where p1(x) is the

local 3× 3× 3 patch at the highest resolution, and v(x) is the high resolution context

descriptor. The number of trees was fixed to 60 and tc = 5, tp = 2tc, and ϵ = 10−6.

Since we used have used data from four subjects as atlases in this experiment, the

box plots were generated using only 17× 2 = 34 synthetic images.

The PSNR, UQI, and SSIM plots shown in Fig. 2.A.5 show that the changes

introduced by different atlas images are minimal. The x-axis in these plots is the

atlas index used in the training data and ranges from 1–4. We note that in Fig. 2.A.5

the PSNR observed for Atlas 1 is statistically significantly different from the other
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atlases, but the same does not hold true for the other metrics or atlases. Thus, for

synthesizing normal anatomy images, the choice of the atlas does not systematically

affect the synthesis results.

PSNR UQI SSIM

Figure 2.A.5: Box plots for all the metrics when four different atlases are used.
PSNR for Atlas 1 is significantly different than the rest of the atlases (p < 0.05) using
the two-sample t-test. However other metrics and other atlases show no significant
differences.

2.A.6 Size of Local Patch

Next, we looked at selecting the best local features for synthesis. We considered

the same task of synthesizing skull-stripped T2w images from MPRAGE images of 20

subjects of the MMRR dataset with the number of trees fixed to 60 and tc = 5, tp = 2tc,

and ϵ = 10−6. The feature vector for this experiment was f1(x) = [p1(x),v(x)], where

p1(x) is the local p × p × p patch at the highest resolution, and v(x) is the high

resolution context descriptor. We varied the size of the local cubic p× p× p patch for

p ∈ {1, 3, 5, 7, 9}.

The resulting PSNR, UQI, and SSIM plots are shown in Fig. 2.A.6. All the metrics
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show a statistically significant increase from patch size of 1× 1× 1 to 3× 3× 3, and

again from patch size of 3× 3× 3 to 5× 5× 5. Further increase in the patch size does

not result in a further statistically significant increase in the metrics.

Despite the improvements in our performance metrics with increasing patch size,

in the experiments below we used a 3×3×3 patch. Our rationale is carefully reasoned

as follows. First, we observed that improvements in our performance metrics from

patch sizes 3× 3× 3 to 5× 5× 5 appear to be primarily due to noise reduction in large,

homogeneous white matter regions. Such noise reduction yields synthetic images that

are much smoother in appearance than real images. There is a concern that such

images will not perform the same as real images in subsequence image processing.

A second reason for sticking with 3×3×3 patches is due to the increased computer

memory burden (almost a factor of 3) of 5× 5× 5 patches. A third reason is that with

the increase in feature dimensionality comes a requirement to increase the number

of training samples and this puts a further memory burden on the software as well

as a computation time increase. In particular, the training time goes from about

5 minutes to 40 minutes when going from 3 × 3 × 3 to 5 × 5 × 5 patches. Taking

into consideration the concerns over unnatural noise reduction and the computational

costs, we chose to use a 3× 3× 3-sized patch in all of our experiments.
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PSNR UQI SSIM

Figure 2.A.6: Increase in patch size from 1 × 1 × 1 to 3 × 3 × 3 and further to
5× 5× 5 are statistically significant (p < 0.05, two-tailed t-test).
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Ψ-CLONE: Pulse Sequence

Information Driven MR Image

Synthesis

3.1 Introduction

All state-of-the-art MR image synthesis algorithms have so far ignored a vital

aspect of MR image processing—the MR image formation process. As described in

Chapter 1, MR imaging physics is responsible for image formation. Voxel intensity

in MRI is primarily dependent on (1) intrinsic NMR parameters such as PD, T2, T1,

and, (2) pulse sequence parameters such as scanner gain (G0), repetition time (TR),

echo times (TE), etc. It is important to take into account how these quantities affect
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MR image formation in order to synthesize an MR image correctly. We propose an

approach that attempts to achieve this. Like previous approaches, our atlas image

set also consists of images from a variety of pulse sequences and acts as the training

data. However, in addition, our atlas also consists of the PD, T1, and T2 maps of the

corresponding images. We assume that the MRI signal is primarily dependent on

these three intrinsic NMR parameters. This is an approximation since we know that it

is also dependent on values like T ∗
2 and can be affected by boundary artifacts. In this

work, we assume that the signal, i.e. the voxel intensity is directly dependent only

on PD, T1, and T2. Given a subject image (and the pulse sequence used to acquire

it) we have developed a procedure to estimate the pulse sequence parameters using

information derived solely from the image intensities. We apply this pulse sequence

with the estimated parameters to quantitative PD, T1, and T2 images in our atlas.

Thus, a new atlas image with the same imaging characteristics as the subject image, is

generated. This step essentially performs intensity standardization between the atlas

and the subject image. It is how the atlas image would have looked had we acquired

it with the subject pulse sequence. This step is crucial because it means that we need

not have an existing atlas image that is of the same contrast or pulse sequence of the

subject image. We can always generate a new atlas image from the intrinsic NMR

parameters. We then learn a nonlinear regression [30] between this standardized atlas

image and the desired, target atlas contrast. This learned regression is then applied

to the subject image directly, thereby synthesizing a subject image with the desired
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contrast.

The core idea of estimating tissue parameters was previously used by Fischl

et al. [71]. However, that approach required the acquisition of very specific pulse

sequences—a limitation that our approach does not share. We refer to our method as

Pulse Sequence Information-based Contrast Learning On Neighborhood Ensembles (PSI-

CLONE)—which we stylize as Ψ-CLONE. We describe our four-step algorithm to

perform image synthesis in Section 3.2. We describe results of validation experiments

on the Brainweb phantom data [72] in Section 3.3 and on real data in Section 3.4; these

experiments include scanner intensity standardization and synthesis of T2w images. In

Section 3.5, we present additional synthesis applications: super-resolution and FLAIR

synthesis. In Section 3.6, there is a discussion about the potential impact of this work

and concluding remarks.

3.2 Method

Let B = {b1, b2, . . . , bm} be the given subject image set, imaged with pulse se-

quences Γ1, . . . ,Γm. This set can contain images from different pulse sequences such as

MPRAGE, SPGR, and DSE and others. Let A = {a1, a2, . . . , an} be the atlas collec-

tion, with images of contrasts C1, C2, . . . , Cn, generated by pulse sequences Ψ1, . . . ,Ψn,

respectively.

The pulse sequence sets {Γ1, . . . ,Γm} and {Ψ1, . . . ,Ψn} need not intersect, which
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Figure 3.1: A flow chart of the Ψ-CLONE algorithm.
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represents an important distinction between Ψ-CLONE and all other atlas-based image

synthesis methods. The atlas also contains quantitative PD, T1, and T2 maps, denoted

aPD
, aT1 , and, aT2 . Our goal is to synthesize the subject image b̂r, r ∈ {1 . . . , n},

which is how the subject brain would look had it been imaged with pulse sequence Ψr

used to acquire the atlas image ar. The steps of our algorithm are as follows:

1. Estimate the pulse sequence parameters used to acquire bi, i ∈ {1, . . . ,m}

2. With this estimate, generate abi the atlas image with the same contrast, Ci, as bi

3. From the expanded atlas collection A ∪ {abi} we learn the nonlinear intensity

transformation between contrast Ci and the target contrast image ar (of contrast

Cr), using patch-based random forest regression

4. The intensity transformation is then applied to bi, generating the subject image

b̂r, of the desired contrast.

These steps are outlined graphically in Fig. 3.1 and detailed in the following sections.

3.2.1 Estimation of Subject Pulse Sequence Pa-

rameters

The intensity observed at voxel location x in bi is assumed to be a result of the

underlying tissue parameters—proton density PD, longitudinal relaxation time T1, and

transverse relaxation time T2—denoted by β(x) = [PD(x), T1(x), T2(x)]. The intensity
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is also a result of the pulse sequence used, Γi, and its pulse sequence parameters (also

referred to as imaging parameters) denoted Θbi . Thus we denote the imaging equation

as,

bi(x) = Γi(β(x); Θbi). (3.1)

For the DSE pulse sequence, the equation is

bDSE(x) = ΓDSE(β(x); ΘDSE)

= GDSEPD(x)

(
1− 2e

−TR−TE1+TE2
2

T1(x) + 2e
−TR−TE1

2
T1(x) − e

− TR
T1(x)

)
e
− TE2

T2(x) , (3.2)

where ΘDSE = {TR,TE1,TE2, GDSE} consists of repetition time TR, two echo times

TE1 and TE2 and scanner gain GDSE [6]. For the T1w SPGR sequence the imaging

equation is

bS(x) = ΓS(β(x); ΘS)

= GSPD(x) sin θ

(
1− e

− TR
T1(x)

)
1− cos θe

− TR
T1(x)

e
− TE

T∗
2 (x) , (3.3)

where ΘS = {TR,TE, θ, GS} consists of repetition time TR, echo time TE, and flip

angle θ [6]. The imaging equation for the MPRAGE sequence can be approximated
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from the mathematical formulation calculated by [5] as

bM(x) = ΓM(β(x); ΘM)

= GMPD(x)

(
1− 2e

−TI
T1(x)

1 + e
−(TI+TD+τ)

T1(x)

)
, (3.4)

where ΘM = {TI,TD, τ, GM} consists of inversion time TI, delay time TD, and the

slice imaging time τ [5]. We assume that we know one of these parameters from the

image header and estimate the rest by fitting the imaging equation to average tissue

intensities.

Given an input subject image, bi, we want to estimate a subset (such as scanner

gain, flip angle, echo times) of pulse sequence parameters Θbi of Γbi . We make certain

assumptions about the tissues being imaged barthereby simplifying the system of

equations we need to solve. As the human brain is dominated by three primary tissues,

cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM), we can use

the known average values of β to solve for the imaging parameters. The mean values

of β for CSF, GM, and WM denoted by β̄C , β̄G, and β̄W , respectively have been

reported previously for 1.5 T [73] and 3 T MRI [74]. We have tabulated them in

Table 3.1.

To identify the three tissue classes, we run a simple three-class fuzzy c-means [75]

algorithm on the T1w image (bS or bM ), and choose voxels with high class memberships

(≥ 0.8) to compute the mean intensities of CSF, GM, and WM in bi as b̄iC , b̄iG, and
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Table 3.1: Average T1, T2 and relative PD values of CSF, GM and WM at 1.5 T and
3 T

Tissue Relative PD T2 (ms) T1 (ms)

1.5 T 3 T 1.5 T 3 T 1.5 T 3 T

White Matter 0.61 0.61 67 79 656 832
Gray Matter 0.69 0.69 77 110 1188 1331

Cerebrospinal Fluid 1.00 1.00 280 1100 4070 4400

b̄iW , respectively for i = 1, . . . ,m.

We make the assumption that these mean intensities are a result of the mean

tissue parameter values. This relationship is written as,

b̄iC = Γi(β̄C ; Θbi), b̄iG = Γi(β̄G; Θbi), b̄iW = Γi(β̄W ; Θbi). (3.5)

The only unknown is Θbi , which for DSE type pulse sequences is parametrized by four

terms. Similarly, MPRAGE and SPGR pulse sequences [5, 6] have four parameters.

Thus, we have three equations (Eqn. 3.5) and four unknowns, and we can solve this

system of equations using Newton’s method after assuming knowledge of one of the

unknowns. For example, in the SPGR pulse sequence, we assume that the repetition

time, TR is known from the image header and the unknowns that are often not

well-calibrated in an MR scanner—e.g, flip angle and scanner gain—are estimated. For

the given subject image set B = {b1, b2, . . . , bm}, we can thus estimate {Θ̂b1 , . . . , Θ̂bm}

for each of the subject images at the end of Step 1.

There are many factors that affect the accuracy of a pulse sequence equation,
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and more unknowns are likely to be actually involved than we may know about.

To address this, we have simplified the problem by using theoretical equations or

approximations of theoretical equations that describe the basic, functional relationship

between the NMR parameters (PD, T1, T2) and the signal intensity. For instance, the

signal intensity equation for the MPRAGE pulse sequence, given in Eqn. 3.4, is an

approximation derived from a complex theoretical derivation of a simple MPRAGE

sequence by [5]. In practice, the MPRAGE sequence implemented on the scanner has

many additional parameters that are not accounted for by this derivation. Therefore,

in most cases, our estimates of the pulse sequence parameters are not particularly

close to the parameters recorded in the image headers. It turns out that this is not

important for the problem at hand, since we do not need to know the exact imaging

parameters of any given pulse sequence. Instead, we need to be able to generate a

realistic synthetic image from our atlas that has the same intensity characteristics as

the subject image using the estimated parameters and approximate pulse sequence.

Approximate imaging equations and their estimated parameters are sufficient for this

purpose.
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3.2.2 Synthesizing a New Atlas Image with Sub-

ject Pulse Sequence Estimates

Now we describe Step 2 of the process, as illustrated in Fig. 3.1. It is unlikely

that our atlas would contain an image with the exact pulse sequence parameters Θbi

estimated from bi, which is why we synthesize an atlas image with the same parameters.

Using the estimated imaging parameters, Θ̂bi , we apply the pulse sequence to the atlas

β. The atlas A = {a1, a2, . . . , an} consists of a set of co-registered brain MR images

of a single brain with different pulse sequences. It also consists of aPD
, aT1 , and aT2 ,

the quantitative PD, T1, and T2 maps for the atlas. Thus, we can directly apply the

subject pulse sequence, Γi, and its estimated Θ̂bi to synthesize a new atlas image abi .

We thereby create an atlas image that looks as if the atlas brain was imaged with the

pulse sequence Γi with parameters Θ̂bi . We need this intermediate step so that we

can learn the intensity transformation between the subject pulse sequence Γi and the

reference pulse sequence Ψr in a common image space, which is the atlas image space.

In practice, the atlas collection B may lack the quantitative PD, T1, and T2 maps—

the relaxometry sequence data is generally not available for most clinical data. We

can approximately estimate these maps from the images present in the atlas collection

by solving for PD, T1, and T2 at each voxel. Since we are estimating three quantities

in β(x) = [PD(x), T1(x), T2(x)], we require at least three atlas images, au, av, and

aw. We reiterate that all images are co-registered using rigid registration. From the
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method described in Section 3.2.1, we can estimate Θ̂au , Θ̂av , and Θ̂aw . For each voxel

x, we have three intensity values from three images, thus leading to three equations,

Ψu(β(x); Θ̂au) = au(x),

Ψv(β(x); Θ̂av) = av(x), (3.6)

Ψw(β(x); Θ̂aw) = aw(x).

This system of simultaneous nonlinear equations can be solved by Newton’s method

for each voxel to provide us with an estimate β̂(x). The component parts of β̂(x) are

[β̂1(x), β̂2(x), β̂3(x)] that are our estimates of [PD(x), T1(x), T2(x)]. Thus, we add the

images aβ̂1
, aβ̂2

, and aβ̂3
to our atlas to represent the PD, T1, and T2 quantitative maps,

respectively. This calculation needs to be done only once, during the construction of a

suitable atlas. We used this approach as as an intermediate step to perform intensity

standardization [63].

3.2.3 Learning and Applying Nonlinear Regression

on Image Patches

Having synthesized the atlas image abi that has the pulse sequence characteristics

of the subject image bi, we next learn the intensity transformation that will convert

the intensities in abi to the corresponding intensities in the target atlas image ar. We
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depict this as Step 3 in Fig. 3.1. This is achieved through a nonlinear regression by

considering the image patches of abi together with the corresponding central voxel

intensities in ar. We extract p × q × r sized patches from abi , centered at the vth

voxel—in our experiments p = q = r = 3. We stack the 3D patch into a d× 1 = 27× 1

vector and denote it by fv ∈ Rd, which we refer to as a feature vector of the vth

voxel. The corresponding intensity at the vth voxel of ar is denoted by yv and acts

as the dependent variable in our regression; we denote these training data pairs as

⟨fv, yv⟩. We use patches as intensity features to learn this transformation. A small

patch captures the local context at a voxel and ensures spatial smoothness. We could

use other synthesis methods like MIMECS [4] to learn this transformation, however

we chose to use the random forest regression as it was shown to produce better quality

synthetic images at an order of magnitude lower computation time [30]. Using small

patches and random forest regression for synthesis was an early version of REPLICA.

We use a bagged ensemble of regression trees to learn this nonlinear regression [47].

This standalone regression ensemble for synthesis was previously explored in [30]. A

single regression tree learns a nonlinear regression by partitioning the d-dimensional

space. This is done by performing binary comparison splits at each node of the tree,

based on a particular attribute value which is compared to a threshold. The tree

is built by minimizing the least squares criterion during training. The growth of

the tree is limited by fixing the maximum number of vectors allowed at each leaf,

in our experiments this was limited to five data vectors. This stops a tree from
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becoming too deep and hence over-fitting the training data. A single regression tree

is considered a weak learner and in general has higher error [47], therefore we use a

bagged ensemble of regression trees (30 in our experiments), which reduces errors by

bootstrap aggregation [47]. To create a bootstrapped data set, a training sample is

picked at random with replacement N times, where N is the size of the training data,

∼106 in our experiments.

Once the training is complete, the trained regression ensemble transforms intensities

of abi to those of ar. This ensemble is used to synthesize the subject image b̂r by

extracting image patches from bi and applying the trained regression ensemble to each

patch to synthesize the corresponding b̂r voxel intensities, which is the last step, Step

4 in Fig. 3.1.

Thus, starting with a subject image and a set of atlas images, we estimate the

pulse sequence parameters of the subject image, create an additional atlas image

by applying those parameters to the atlas quantitative images, learn an intensity

transformation from the additional atlas image to the target atlas contrast image

using random forest regression, and lastly apply the regression to the given subject

image to create a synthetic image of the required contrast. Ψ-CLONE is summarized

in Algorithm 3. In the following sections, we describe validation experiments and

applications of Ψ-CLONE in different image analysis contexts.
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Algorithm 3 Ψ-CLONE

1: Data: Subject image bi. Co-registered atlas images, target contrast ar, NMR
maps, aPD

, aT1 , and aT2

2: Perform tissue classification of subject bi using fuzzy c-means clustering
3: Calculate mean tissue intensities of CSF (b̄iC), GM (b̄iG) and WM (b̄iW )
4: Estimate pulse sequence parameters Θ̂bi of subject pulse sequence by solving a

nonlinear simultaneous system of equations in Eqn. 3.5
5: Synthesize a new atlas image abi(x) = Γi({aPD

(x), aT1(x), aT2(x)}, Θ̂bi)
6: Extract 3× 3× 3 patches from abi
7: Extract corresponding voxel intensities from ar to create training data
8: Train a random forest on this training data to predict intensities in ar
9: Extract patches from subject image bi and apply learned random forest to predict

synthetic image b̂r

3.3 Computational Phantom Experiments

The goal of our method is to produce synthetic images that are useful substitutes

for real images for image processing tasks. Thus, one aspect of algorithm performance

evaluation consists of using image quality metrics to compare synthetic images with

known ground truth images. The ground truth images are simulated with known

pulse sequence parameters on brain voxels with known NMR parameters. We compare

our synthetic images with these known simulated images to validate our method in a

controlled experimental setting. In this section, we used the Brainweb image phantom

for intensity standardization and synthesis of T2w images from T1w images.

3.3.1 Brainweb SPGR: Estimating abi

In this validation experiment the atlas set A consisted of images from the Brain-

web [72] phantom, consisting of:
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b1 ab1 Difference Image

(a) (b) (c)

Figure 3.1: Shown are (a) an SPGR image (TR = 18 ms,TE = 10 ms, α = 45◦ with
0% additive noise) which we use as our subject image b1, the maximum intensity value
is 1080, the (b) new atlas image, ab1 , with pulse sequence parameters estimated from
b1, and (c) the difference image |ab1 − b1|, the maximum value is 5.

a1: SPGR image (1.5 T, TR = 18 ms, α = 30◦, TE = 10 ms) with 0% noise,

aT1 : Quantitative T1 map derived from two different SPGR images, with two different

flip angles (TR = 100 ms, TE = 15 ms, α1 = 15◦, and α2 = 30◦) using the dual

flip angle method [76],

aT2 : Quantitative T2 map derived from a DSE sequence (TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms) by the two point method [50],

aPD
: Quantitative PD map derived from the reference SPGR and the DSE images

using the method described in Section 3.2.2.

The aim of this experiment is to validate Step 1 and Step 2 of Ψ-CLONE. We do this

by taking several images as a potential subject image and carry out just the first two
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steps of Ψ-CLONE which results in the image abi . Specifically the subject images

were:

b1: SPGR image (1.5 T, TR = 18 ms, α = {15◦, 30◦, 45◦, 60◦, 75◦, 90◦}, TE = 10 ms)

with 0% noise. (Parameters, excepting TR, not provided to the algorithm)

We note that the subject imaging parameters are shown for the sake of the reader

and are not provided to the algorithm (except TR).

The first step of Ψ-CLONE estimates the imaging parameters from the subject

image. As both the atlas and subject images come from the same phantom—they

have the same phantom anatomy and NMR parameters—this allows us to validate

Step 2, in which we create a synthetic atlas image using the pulse sequence parameters

of the subject image. Since the anatomy of subject and atlas is the same in this

special case, we can directly compare the synthetic atlas image with the subject image

to validate if the pulse sequence parameters are producing an identical image. We

would prefer to compare the estimated pulse sequence parameters with the known

true parameters. Unfortunately, this comparison is not suitable for all parameters

because we use theoretical equations or their approximations to estimate the pulse

sequence parameters and the actual simulation or scanner implementation can be

more complex with a larger number of parameters. As a small example, we carried

out an experiment on the Brainweb phantom data to measure the error between the

true parameters and the estimated parameters. We simulated different SPGR images

by keeping the repetition time TR = 18 ms fixed, and varying the flip angle. We next
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estimated the imaging parameters of these images by the method described above.

The estimated flip angles for these images and the true flip angles used to simulate

these images are recorded in Table 3.1. As can be seen, these estimates are close to

but not equal to the truth. This error increases in realistic settings.

Table 3.1: Flip angles used in Brainweb SPGR simulation vs estimated Flip angles
after fitting.

True flip angle (◦) Estimated flip angle (◦)

30 32.08
45 48.70
60 65.08
75 84.79
90 106.57

Hence we focus on the images that these parameter estimates create when applied to

the estimated PD, T1, and T2 values. We compute the root mean squared error (RMSE)

and peak signal to noise ratio (PSNR) between the new atlas image (abi) and the

subject image (bi), as shown in Table 3.2. Figure 3.1 shows the input b1 image and the

estimated ab1 , along with the difference image for the case of α = 45◦ (third column

of Table 3.2). The images are very similar to each other with small differences at

tissue boundaries. The differences are only visible at the boundaries because, as the

histogram in Fig. 3.3 shows, Brainweb phantom images with no noise typically have

very homogenous intensity distribution in each of the tissue classes (WM, GM, CSF).

Hence the error inside the tissues is very close to zero, but is slightly higher at the

intermediate intensity voxels that are closer to the boundaries. We note that RMSE

and PSNR are computed over the non-zero voxels in the image. RMSE is reported in
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terms of percentage error with respect to the maximum intensity in the image. The

high PSNR values in Table 3.2 along with the visual result in Fig. 3.1 confirm that

the theoretical pulse sequence equations and the underlying quantitative PD, T1, and

T2 maps produce images that are close to the ground truth images, thus validating

the first two steps of our algorithm.

This experiment establishes that even though Ψ-CLONE is unable to estimate the

pulse sequence parameters exactly, the estimated parameters produce an image that

is close enough to the ground truth when applied to the NMR parameters.

Table 3.2: RMSE between ab1 and b1 (as a % w.r.t max intensity) and PSNR (dB)
values for Brainweb T1w SPGR atlas synthesis for subject pulse sequences with varying
flip angles.

Flip angle 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

RMSE % 5.09 2.49 1.63 1.18 0.88 0.68
PSNR 29.82 34.24 35.42 35.76 35.88 35.94

3.3.2 Brainweb SPGR Intensity Standardization

The goal of this experiment is to standardize a Brainweb SPGR subject image to

an atlas target SPGR image. Different subject SPGR images were simulated using

different input pulse sequence parameters. Using the same Brainweb atlas collection

described in Section 3.3.1, we evaluated the results of Steps 3 and 4 of our method,

the regression based image synthesis. Our subject images are:

b1: SPGR image (1.5 T, TR = 18 ms, α = {15◦, 30◦, 45◦, 60◦, 75◦}, TE = 10 ms)
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b1 b̂1 a1

(a) (b) (c)

Figure 3.2: Shown are (a) an SPGR image (TR = 18ms,TE = 10ms, α = 45◦ with
3% additive noise) which we use as our subject image b1, the (b) reconstruction, b̂1, of
the subject image with the same pulse sequence as used to image (c) the atlas target
image a1 (TR = 18ms, α = 30◦, TE = 10ms with 0% noise).

with {0%, 3%} noise levels. (Parameters, excepting TR, not provided to the

algorithm)

As the target atlas and subject images are both from the SPGR pulse sequence, this

is a special case of synthesis, normally referred to as intensity standardization or

normalization. We can compare the standardized subject image to the target atlas

image directly as they have the same anatomy. We also compared the performance of

our standardization with a landmark-based piecewise linear scaling method (UPL) [2],

reporting PSNR for the input subject image in Table 3.3. UPL estimates the landmarks

in the images for each of the three tissue classes (CSF, GM, and WM) and then uses

a piecewise linear scaling between the target and subject histogram to normalize the

images.
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Figure 3.3: Histogram of a typical noiseless Brainweb phantom

The histogram of a noise free Brainweb SPGR phantom is shown in Fig. 3.3. The

histogram landmarks consist of very sharp peaks, indicating that a large number of

voxels have very similar intensities. A piecewise linear transform can map exactly

between two (subject and atlas) such histograms of noiseless Brainweb phantoms.

This explains why the UPL method performs better than our method in the 0% noise

case. However, with the introduction of noise our method outperforms UPL in four

out of the five cases, as shown in Table 3.3.

Using simulated images we can thus show that Ψ-CLONE is able to standardize

to a reference better than UPL, in noisy images.

96



CHAPTER 3. Ψ-CLONE

Table 3.3: PSNR (dB) values between a1 and b̂1, for standardization of Brainweb
phantoms with varying flip angles (◦) and noise levels are shown for UPL and Ψ-
CLONE. In the noise free case, UPL is better, however the introduction of noise causes
UPL results to deteriorate.

0% Noise 3% Noise
Flip Angle UPL Ψ-CLONE UPL Ψ-CLONE

15◦ 37.95 27.95 27.27 26.00
30◦ 62.66 35.90 28.93 30.96
45◦ 49.26 37.32 28.88 31.48
60◦ 46.94 37.67 28.81 31.39
75◦ 46.08 37.79 28.78 31.52

3.3.3 Brainweb T2w Synthesis

Ψ-CLONE was next used to synthesize a T2w image from a subject SPGR image,

using the Brainweb atlas collection described in Section 3.3.1 with the addition of:

a2: T2w image from the second echo of a DSE (1.5 T, TR = 3000 ms, TE1 = 17 ms,

TE2 = 80 ms) with 0% noise.

We use the following input subject Brainweb SPGR images:

b1: SPGR image (1.5 T, TR = 18 ms, α = {15◦, 30◦, 45◦, 60◦}, TE = 10 ms) with

{0%, 1%, 3%, 5%} noise levels. (Parameters, excepting TR, not provided to the

algorithm)

The UPL method is unable to synthesize a T2w image from an SPGR, as it is

primarily an intensity standardization approach; thus, for this experiment we compare

Ψ-CLONE to MIMECS [4,28]. MIMECS is a state-of-the-art MR contrast synthesis

approach that uses an example-based sparse reconstruction from image patches to
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perform intensity standardization and missing tissue contrast recovery. MIMECS,

unlike Ψ-CLONE, is blind to the MR physics and solves the synthesis problem based

on patch similarity between the subject and the atlases. As the atlas and the subject

have the same phantom anatomy, an ideal synthesis would result in an image that

is exactly equal to the atlas T2w image. Thus, we evaluate the quality of synthesis

by calculating the PSNR between the atlas image and the synthesized subject image.

We also evaluate the quality of synthesis using the universal quality index (UQI) [53].

The results for this experiment are shown in Table 3.4. The top half of the table

shows results for changing noise levels with a fixed flip angle (30◦) for the input SPGR,

while the bottom half shows the results for changing flip angles with 0% noise in the

input SPGR. For both metrics, Ψ-CLONE outperforms MIMECS. An example of an

input SPGR used in this experiment, the true T2w, image and the outputs of both

MIMECS and Ψ-CLONE are shown in Fig. 3.4.

Input SPGR True T2w MIMECS Ψ-CLONE

(a) (b) (c) (d)

Figure 3.4: (a) An example input subject SPGR from which we synthesize a T2w
image. (b) The true T2w image and the outputs of synthesis produced by (c)MIMECS
and (d) Ψ-CLONE.

98



CHAPTER 3. Ψ-CLONE

Table 3.4: PSNR (dB) and UQI values for Brainweb T2w synthesis with varying noise
levels (%) and flip angles (◦) are shown for MIMECS and our algorithm (Ψ-CLONE).

Noise (%) 0 1 3 5

PSNR
MIMECS 26.25 19.96 19.09 19.21
Ψ-CLONE 30.33 30.71 29.09 26.63

UQI
MIMECS 0.93 0.88 0.83 0.82
Ψ-CLONE 0.95 0.94 0.91 0.88

Flip Angle (◦) 15 30 45 60

PSNR
MIMECS 24.51 26.25 25.27 24.82
Ψ-CLONE 25.99 30.33 30.94 31.06

UQI
MIMECS 0.90 0.93 0.92 0.92
Ψ-CLONE 0.90 0.95 0.96 0.96

3.4 Real Data Experiments

In this section, we present intensity standardization and image synthesis experi-

ments performed on real datasets.

3.4.1 Human Stability Data

A normal, healthy human subject was imaged at weekly intervals using the same

scanner and pulse sequence for nine weeks. We demonstrate that image segmentation

is more consistent on data which is intensity standardized using Ψ-CLONE. To do

this we standardize each time point to an atlas consisting of:

a1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3 voxel

size),
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aT1 : Quantitative T1 map computed as described in Section 3.2.2,

aT2 : Quantitative T2 map derived as described in Section 3.2.2,

aPD
: Quantitative PD map derived as described in Section 3.2.2,

and each of the nine subject images is:

b1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3 voxel

size. (Parameters, excepting TR, not provided to the algorithm)

 0.304

 0.306

 0.308

0.310

 0.312

 0.314

 0.316

 0.318

0.320

 1  2  3  4  5  6  7  8  9

R
e
la

ti
v
e
 T

is
su

e
 V

o
lu

m
e

Week Number

Single Subject WM Volume Stability

Before Norm.
After Norm.

Figure 3.1: The brown plot illustrates relative WM volumes (with respect to the
ICV) over nine weeks before any standardization while the green plot illustrates the
same values after intensity standardization using Ψ-CLONE.

We compare the segmentations of the images pre- and post-standardization using

Ψ-CLONE, based on segmentations generated by TOADS [77]. We specifically compare

the relative tissue volumes (relative to the intra-cranial volume (ICV)), over the nine

weeks. Ideally, a normal healthy subject should not present any changes in tissue

volumes over such a short period of time.
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Table 3.1: Coefficient of Variation (CV) of the relative tissue volumes (×10−3) over
the nine weeks on the original data and after intensity standardization with Ψ-CLONE
for each of white matter (WM), cortical gray matter (Cort. GM), subcortical gray
matter (Sub. GM), cerebrospinal fluid (CSF), and the ventricles (Vent.). Table 3.2
shows further breakdown of Sub. GM structures.

Classes

Vol. CV WM Cort. GM Sub. GM CSF Vent.

Original 8.6 6.4 20.4 11.9 30.7
Ψ-CLONE 4.3 5.7 19.4 12.0 23.1

Fig. 3.1 shows the relative WM volumes before and after Ψ-CLONE was applied.

Visually, it is apparent that the WM volumes change less when standardized images

are segmented. Table 3.1 shows the coefficient of variation of relative tissue volumes

for CSF, cortical GM, subcortical GM, ventricles, and cortical WM. The coefficients

of variation from segmentation after standardization by Ψ-CLONE are smaller than

those without standardization for cortical WM, cortical and subcortical GM, and

ventricles, indicating that the segmentation is more stable. As there are only nine

time-points there is insufficient data to determine significance. The subcortical gray

matter class consists of the thalamus, caudate and putamen structures. We compared

the volumes of these structures before and after standardization and calculated the

coefficient of variation in both cases. Results are shown in Table 3.2. The thalamus

volumes for Ψ-CLONE standardized images are most stable as evinced by the reduced

coefficient of variation. The coefficient of variation decreases slightly for putamen and

increases slightly for caudate. However the accuracy of LesionTOADS segmentations

for subcortical structures is not as high as it is for the cortical GM or WM, hence these
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numbers may not be reliable indicators of segmentation consistency. Additionally,

these are only nine time-points of a single subject, so we cannot claim statistical

significance in these measurements at this point.

This experiment shows that, overall, Ψ-CLONE enables us to perform more

consistent segmentations.

Table 3.2: Coefficient of Variation (CV) of the relative tissue volumes (×10−3) over
the nine weeks on the original data and after intensity standardization with Ψ-CLONE
for each of caudate, putamen, and thalamus.

Structures

Vol. CV Caudate Putamen Thalamus

Original 9.9 9.9 51.9
Ψ-CLONE 10.3 9.7 45.3

3.4.2 MR Intensity Scale Standardization for MS

Patients

To allow us to have statistical power in our exploration of MR intensity scale

standardization, we employ a cohort of 15 Multiple Sclerosis (MS) patients with 57

scans. Each patient has at least three scans (mean # of scans per subject is 3.8)

acquired approximately a year apart. Preprocessing of the images included skull-

stripping [58] and bias field inhomogeneity correction [78]. For this experiment our

atlas consisted of:

a1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3 voxel
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size),

a2: T2w image from the second echo of a DSE (3 T, TR = 4177 ms, TE1 = 12.31 ms,

TE2 = 80 ms, 0.82× 0.82× 2.2 mm3 voxel size),

a3: PDw from the first echo of a DSE (3 T, TR = 4177 ms, TE1 = 12.31 ms,

TE2 = 80 ms, 0.82× 0.82× 2.2 mm3 voxel size),

a4: FLAIR (3 T, TI = 11000 ms, TE = 68 ms, 0.82× 0.82× 2.2 mm3 voxel size)

aT1 : Quantitative T1 map computed as described in Section 3.2.2,

aT2 : Quantitative T2 map derived as described in Section 3.2.2,

aPD
: Quantitative PD map derived as described in Section 3.2.2,

and our subject image was:

b1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3 voxel

size). (Parameters, excepting TR, not provided to the algorithm)

We use an atlas MPRAGE as the target pulse sequence to which we standardize

the 57 data sets. We treat each data set independently, handling the intensity

standardization as a cross-sectional task. To validate the intensity standardization,

we segmented [55] the original MPRAGE datasets giving us ten labeled structures:

ventricles, sulcal CSF, cerebellar GM (Cereb. GM), cortical GM (Cort. GM), thalamus,

putamen, cerebellar WM (Cereb. WM), cortical WM (Cort. WM), and lesions.
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Using these structures as reference, we compared the mean intensity within these

structures prior to standardization and after standardization with UPL—using the

target MPRAGE in our atlas as a standardization target—and our method (Ψ-

CLONE). We note that the atlas images did not have lesions. For applications like

T1w intensity standardization, we observed that the presence or absence of lesion

samples in the training data did not affect the synthesis result. The primary reason

is that white matter lesion intensities are similar to GM (and rarely CSF) in T1w

contrasts. Thus, the database has a large number of normal appearing GM and CSF

samples available to reconstruct the lesion intensities.

Table 3.3: The mean intensity value for the atlas used in the MS standardization
experiment are shown for ten structures. We also show the mean (×104) and std
(×104) (over 57 images) of the average intensity value for each structure, based on the
original unnormalized data (Original) and after standardization with both UPL [2]
and our method (Ψ-CLONE).

Atlas Original UPL Ψ-CLONE
Mean Mean Std Mean Std Mean Std

Ventricles 3.92 5.41 1.815 4.25 0.664 4.11† 0.271∗

Sulcal CSF 2.50 3.95 1.132 3.11 0.543 2.97 0.478
Lesions — 18.54 5.880 14.62 1.293 14.51 1.516
Cereb. GM 12.27 15.86 5.295 12.68 1.013 12.27† 0.433∗

Cort. GM 10.47 13.40 4.722 10.62 1.199 10.27† 0.260∗

Caudate 12.93 16.98 5.866 13.53 1.130 13.10† 0.526∗

Thalamus 14.99 21.20 7.036 16.96 1.010 16.63† 0.548∗

Putamen 15.53 20.26 7.286 16.23 1.196 15.77† 0.485∗

Cereb. WM 20.79 27.66 9.333 21.05 0.209 22.02 0.266
Cort. WM 20.53 25.77 8.778 20.22 0.266 20.41† 0.186∗

† Difference between atlas mean and normalized mean is significantly smaller than UPL (α level of 0.05)
using a two-sample one-tailed T-test.

∗ Standard deviation is significantly smaller than UPL (α level of 0.05) based on a two-sample F-test.

Results are shown in Table 3.3. The mean intensity values of the original images
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and the Ψ-CLONE standardized images recorded in Table 3.3, demonstrate that

our method is moving the MS data intensities closer to the atlas intensities, as

desired by standardization. A one tailed F-test on the mean structure intensities after

standardization shows that the standard deviation of the mean structure intensities

across the 57 datasets for Ψ-CLONE is significantly smaller in comparison to UPL

for seven of the ten structures. We also note that the statistical significance does

not change if the segmentation is done on the original data or on the standardized

versions.

Table 3.4: Contrast values between neighboring structures for original, synthetic, and
atlas images. ∗ indicates that the contrast in synthetic images higher than the original
images (statistically significant using Student’s one-tailed T test with p < 0.05).

Structure Boundary Contrasts

Struct. Boundaries Original Ψ-CLONE Atlas

Cort CSF–Cort GM 0.594 0.604∗ 0.625
Cort GM–WM 0.480 0.482 0.489
WM–Lesions 0.279 0.300 —
WM–Caudate 0.341 0.367∗ 0.370
WM–Putamen 0.214 0.219 0.240
WM–Thalamus 0.176 0.208∗ 0.269
WM–Ventricles 0.846 0.863∗ 0.878
Ventricles–Caudate 0.765 0.784∗ 0.804
Ventricles–Thalamus 0.814 0.827∗ 0.834

Next, we ran LesionTOADS segmentation on images before and after standardiza-

tion. These segmentations were used to calculate image contrast between neighboring

structures to indicate the effect of synthesis-based standardization on subsequent

segmentation. We looked at the following structure boundaries, Cortical CSF-Cortical
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GM, Cortical GM-WM, WM-lesions, WM-Ventricles, WM-Caudate, WM-Putamen,

WM-Thalamus, Caudate-Ventricles, and Thalamus-Ventricles and have tabulated the

results in Table 3.4. We can show that on average these contrast values for synthetic

images are higher than the real images, significantly in most cases. The contrast

values for synthetic images are also closer to the reference contrast values for the

same structures, than the original images. We have defined contrast between two

neighboring structures f and g as µ(f)−µ(g)
µ(f)

, where µ(f) is the mean intensity of the

brighter structure f and µ(g) is the mean intensity of the structure g. The higher the

contrast, the easier it is to differentiate structures.

Thus, in this experiment we have demonstrated that Ψ-CLONE is able to stan-

dardize a large dataset so that the average tissue intensities are closer together for the

whole dataset than before standardization. This allows us to perform more consistent

segmentation.

3.4.3 T2w Synthesis from Real MPRAGE Data

To demonstrate T2w synthesis from MPRAGE on real data, we used the 21 subjects

from the publicly available Multi-Modal MRI Reproducibility Resource (MMRR) [50].

We held out a single subject as the atlas:

a1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0× 1.0×

1.2 mm3 voxel size),
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a2: T2w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.5× 1.5× 1.5 mm3 voxel size),

a3: PDw image from the first echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.5× 1.5× 1.5 mm3 voxel size),

aT1 : Quantitative T1 map computed from two flip angles (3 T, TR = 100 ms,

TE = 15 ms, α1 = 15◦, α2 = 60◦, 1.5× 1.5× 1.5 mm3 voxel size),

aT2 : Quantitative T2 map derived from a two-point method (3 T, TR = 6653 ms,

TE1 = 30 ms, TE2 = 80 ms, 1.5× 1.5× 1.5 mm3 voxel size),

aPD
: Quantitative PD map derived from the MPRAGE and the DSE images using

the method described in Section 3.2.2.

Our subject image is:

b1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0× 1.0×

1.2 mm3 voxel size). (Parameters, excepting TR, not provided to the algorithm)

We note that the atlas image did not have lesions. For an application like T2w synthesis,

we again observed that the presence or absence of lesion samples in the training data

did not affect the synthesis result. The primary reason is that white matter lesion

intensities are similar to GM (and rarely CSF) in T1w and T2w contrasts. Thus, the

database has a large number of normal appearing GM and CSF samples available to

reconstruct the lesion intensities.
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True T2w FUSION MIMECS Ψ-CLONE

(a) (b) (c) (d)

Figure 3.2: Shown are (a) the true T2w image, and the synthesis results from the
MPRAGE for each of (b) FUSION, (c) MIMECS, and (d) Ψ-CLONE (our method).
The lesion (in the green circle) and the ventricles (in the blue circle) in the true image
are synthesized by MIMECS and Ψ-CLONE, but not by FUSION.

The remaining 20 available subjects each have two MPRAGE acquisitions and two

corresponding DSE images which are co-registered to the MPRAGE. These images

were acquired on the same scanner within a short duration of each other. For each of

these 40 images (20 subjects × 2 MPRAGE scans) we synthesized a T2w image. As the

atlas was imaged on the same scanner we directly compare the synthesized T2w image

with the true T2w image from the same scanning session, using PSNR and UQI. We

compared to MIMECS [28] and to a deformable registration-based synthesis. To carry

out synthesis using deformable registration, the atlas image is registered deformably to

the subject image of the same contrast. The same deformation is then applied to the

atlas image of the desired contrast to produce the synthetic subject image. We use the

state-of-the-art registration method SyN [79] for this synthesis and refer to this method

as FUSION. We used only one atlas for FUSION in this experiment as the multi-atlas

FUSION was not available when these experiments were done. Table 3.5 shows the
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PSNR and UQI for these three methods. We observe that our method (Ψ-CLONE)

provides a significantly (α < 0.01, using the right-tailed two sample t-test) better

quality synthesis in comparison to both MIMECS and FUSION. Figure 3.2 shows the

Table 3.5: Mean and standard deviation (Std. Dev.) of the PSNR and UQI values
for synthesis of T2w images from 40 MPRAGE scans.

PSNR UQI
Mean (Std. Dev.) Mean (Std. Dev.)

FUSION 16.59 (1.35) 0.64 (0.06)
MIMECS 15.01 (0.84) 0.78 (0.03)
Ψ-CLONE 18.59 (1.09)∗ 0.79 (0.02)∗

∗ Statistically significantly better than either of the other two methods (α level of 0.01) using a right-tailed
test.

results for each synthesis approach in comparison to the ground truth image. Though

the PSNR values for FUSION are better than MIMECS (see Table 3.5), the FUSION

synthesis result is anatomically incorrect—the ventricle boundary is incorrect and

lesions posterior to the ventricles are not synthesized. As the output of FUSION is

based on deformably registering the atlas to the subject, if the atlas does not contain

certain tissue features—lesions, for example—then the synthesized subject will not

contain them as well. The lesion in Fig. 3.2 is a white matter lesion. We know that

lesion boundaries appear slightly different in the MPRAGE than in the real T2w image,

and hence it cannot be perfectly reproduced in the synthetic T2w image. However

we aim to synthesize it as correctly as possible and do a better job than currently

available synthesis algorithms. The result of MIMECS is quite noisy and Ψ-CLONE

yields an image that is most visually similar to the true image. The values in Table 3.5
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were obtained on the MMRR dataset that was processed differently than the one used

for the comparison experiment for REPLICA. Therefore values in Table 3.5 and in

Table 2.1 are unfortunately not comparable. However, for this particular experiment

we would expect REPLICA to perform better than Ψ-CLONE for two reasons: 1)

The atlas and the subject images are from the same pulse sequence acquisition and

the intensity standardization in Ψ-CLONE may not offer any advantages, and 2)

the random forest in REPLICA is better tuned to this task than the one used in

Ψ-CLONE.

We also used the atlas images of this dataset to evaluate our estimation procedure

for the intrinsic parameters T2 and T1. The median T2 values calculated by the two

point method [50] using the DSE images were 76 ms for WM, 85 ms for GM, and

175 ms for CSF. We used our estimation procedure (as described in Section 3.2.2) and

the estimated median T2 values obtained were 76 ms for WM, 91 ms for GM, and

762 ms for CSF. Both CSF distributions have a very large standard deviation (∼104),

due to numerical errors. The intensities determined by the imaging equations also

plateau off after a certain T2 value due to their inverse exponential nature (see Eq. 3.2).

Thus the intensities produced for high enough T2 values are very close to each other.

The T1 map was estimated via two flip angle spoiled gradient images, as mentioned in

the atlas description. This is not an ideal approach as the images acquired were noisy

and the flip angle calibration is not considered accurate enough. The median T1 values

thus calculated using the dual flip angle image were 775 ms for WM, 1074 ms for GM,
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and 1616 ms for CSF. Our estimation procedure returned the following median T1

values of 779 ms for WM, 1151 ms for GM, and 2916 ms for CSF. As with T2 values,

the intensities produced by high T1 values plateau off after a certain point due to the

inverse exponential dependence on T1 (see Eqs. 3.2, 3.3, 3.4). Thus, despite being

slightly different from the expected values, our estimated T2 and T1 values are good

enough to provide a realistic synthesis.

3.5 Further Synthesis Applications

In this final experimental section, we present additional results that demonstrate

potential uses of Ψ-CLONE.

3.5.1 Synthesizing Higher Resolution T2w Data

Example-based synthesis of high resolution brain MR images has been explored in

many recent works [1,24,32,70]. We applied Ψ-CLONE to synthesize higher resolution

T2w images than those acquired on the scanner. Our atlas collection A is:

a1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.1× 1.1×

1.1 mm3 voxel size),

a2: T2w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.1× 1.1× 1.1 mm3 voxel size),
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and our subject images come from our MS cohort:

b1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3 voxel

size). (Parameters, excepting TR, not provided to the algorithm)

Pulse sequences like the DSE or FLAIR tend to have large TR or TI values to achieve

the right contrast. To reduce the scan time while imaging patients, these pulse

sequences are usually acquired at a lower resolution than a T1w sequence such as

MPRAGE. Multimodal analysis of such datasets requires all images to exist in the

same coordinate system at the same digital resolution. This is usually achieved by

upsampling the low resolution scans to the high resolution ones using interpolation,

which results in blurring of the image data. Using Ψ-CLONE, we can synthesize a T2w

image from the high resolution MPRAGE. This synthetic image will have the same

resolution as that of the MPRAGE and hence can replace the acquired low resolution

image. As we have no ground truth for the higher resolution T2w image we visually

compare it with the acquired T2w image. The acquired T2w image has a through-plane

resolution of 2.2 mm whereas the subject MPRAGE, and consequently the synthetic

T2w image have a through-plane resolution of 1.1 mm. Both are shown in Fig. 3.1.

The quality and resolution of the newly synthesized image is visually superior to the

original acquisition.
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Figure 3.1: The MPRAGE has a through-plane resolution of 1.1 mm, while the
original T2w has through-plane resolution of 2.2 mm. This is evident as the true
interpolated T2w image shows blurring while the Ψ-CLONE synthesized image is crisp.

3.5.2 FLAIR Synthesis

FLAIR is the pulse sequence of choice when identifying white matter lesions

present in MS patients. The lesions appear hyperintense with respect to the rest of

the tissue which makes delineating them easier. Most leading lesion segmentation

algorithms rely on the FLAIR image to provide intensity information for accurate

classification [55,80,81]. FLAIR images are prone to certain artifacts (see Fig. 3.4 (e))

for a variety of reasons [16]. The long inversion times make it difficult to acquire high

resolution scans in a short time. We demonstrate that if we acquire T1w, PDw, and

T2w images of a subject, we have enough information to generate a synthetic FLAIR

using Ψ-CLONE. The lesion intensity signature in FLAIR images is very distinct from

the rest of the tissues. Hence the presence of lesion samples in the atlas set is essential
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in order to learn to reproduce it correctly. For this experiment, the atlas brain we use

has a moderate lesion load. The atlas contained the following images:

a1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0× 1.0×

1.2 mm3 voxel size),

a2: T2w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.5× 1.5× 1.5 mm3 voxel size),

a3: PDw image from the first echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.5× 1.5× 1.5 mm3 voxel size),

aT1 : Quantitative T1 map computed as described in Section 3.2.2,

aT2 : Quantitative T2 map derived as described in Section 3.2.2,

aPD
: Quantitative PD map derived as described in Section 3.2.2.

Our subject images are:

b1: MPRAGE image (3 T, TR = 6.7 ms, TE = 3.1 ms, TI = 842 ms, 1.0× 1.0×

1.2 mm3 voxel size), (Parameters, excepting TR, not provided to the algorithm)

b2: T2w image from the second echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.5× 1.5× 1.5 mm3 voxel size), (Parameters, excepting TR, not

provided to the algorithm)
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b3: PDw image from the first echo of a DSE (3 T, TR = 6653 ms, TE1 = 30 ms,

TE2 = 80 ms, 1.5× 1.5× 1.5 mm3 voxel size). (Parameters, excepting TR, not

provided to the algorithm)

Subject T1w T2w PDw Synth. FLAIR True FLAIR

Figure 3.2: Subject input images along with the synthetic and true FLAIR images.

We would like to stress that the set of subject pulse sequence parameters (except

TR) are unknown and these are extracted using the first step of Ψ-CLONE. Next, the

new atlas T1w, PDw, and T2w atlas images are generated by applying the respective

pulse sequence equations to the atlas PD, T1, and T2 values. The following step of

learning a patch-based regression is slightly different from the previous experiments.

The feature vector bi for a voxel i, is created by concatenating the corresponding

3 × 3 × 3-sized patches centered on voxel i, from all three images. The dependent

variable ri is the corresponding target atlas FLAIR intensity at voxel i. Thus, the

training data consists of pairs of ⟨bi, ri⟩ from the extracted synthetic atlas images

and the atlas FLAIR image. A nonlinear regression is learned using random forests

and the trained regression is then applied to the extracted patches from the subject

images to synthesize the subject FLAIR. Figure 3.2 displays the subject input images
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and synthetic FLAIR with the true FLAIR for visual comparison.

We ran LesionTOADS on the real and synthetic FLAIR images shown in Fig. 3.2.

The resulting segmentations are shown in Fig. 3.3. The lesion volume obtained from

the real FLAIR using LesionTOADS was 3107.5 mm3 whereas that obtained from a

synthetic FLAIR was 5900.3 mm3. The excess seems to come from slightly enlarged

regions with lesion-like intensities in the synthetic FLAIR. Our result, though visual

in nature, is still a large improvement on the FLAIR synthesis result demonstrated

in [4].

Subject T1w Synth. FLAIR Synth. Seg. Real FLAIR Real Seg.

Figure 3.3: (a) Real T1w image, (b) synthetic FLAIR, (c) LesionTOADS segmenta-
tion of real T1w + synth. FLAIR, (d) real FLAIR, (e) LesionTOADS segmentation of
real T1w image + real FLAIR.

Synthesizing FLAIR images is especially useful when the original FLAIR has

artifacts, which can lead to erroneous tissue segmentation. In the next experiment, we

looked at data where the acquired FLAIR was of bad quality due to motion artifacts

and created a synthetic FLAIR image for visual comparison. The atlas brain for this

experiment also has lesion voxels, which are essential for training. The atlas set was:

a1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3 voxel
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size),

a2: T2w image from the second echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms,

TE2 = 80 ms, 0.82× 0.82× 2.2 mm3 voxel size),

a3: PDw from the first echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms,

TE2 = 80 ms, 0.82× 0.82× 2.2 mm3 voxel size),

a4: FLAIR (3 T, TI = 11000 ms, TE = 68 ms, 0.82× 0.82× 2.2 mm3 voxel size)

aT1 : Quantitative T1 map computed as described in Section 3.2.2,

aT2 : Quantitative T2 map derived as described in Section 3.2.2,

aPD
: Quantitative PD map derived as described in Section 3.2.2.

The subject set consisted of:

b1: MPRAGE image (3 T, TR = 10.3 ms, TE = 6 ms, 0.82× 0.82× 1.17 mm3 voxel

size), (Parameters, excepting TR, not provided to the algorithm)

b2: PDw image from the first echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms,

TE2 = 80 ms, 0.82 × 0.82 × 2.2 mm3 voxel size), (Parameters, excepting TR,

not provided to the algorithm)

b3: T2w image from the second echo of a DSE (3 T, TR = 4177 ms, TE1 = 3.41 ms,

TE2 = 80 ms, 0.82 × 0.82 × 2.2 mm3 voxel size). (Parameters, excepting TR,

not provided to the algorithm)
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Subject T1w T2w PDw Synth. FLAIR Real FLAIR

(a) (b) (c) (d) (e)

Figure 3.4: (a) Real T1w image, (b) real T2w image, (c) real PDw image, (d) synthetic
FLAIR, (e) real FLAIR. The real FLAIR shows motion artifacts in (e), which are not
present in the synthetic FLAIR (d).

The results of this experiment are shown in Fig. 3.4. The synthetic FLAIR shown

in Fig. 3.4(d) does not possess the motion artifacts present in the true FLAIR in

Fig. 3.4(e), since these are not present in the input T1w, T2w, and PDw images.

Segmentation errors can also stem from misalignment of multimodal images.

In the next experiment we demonstrate the potential benefit of using Ψ-CLONE

generated synthetic FLAIR images in multimodal analysis. We use the same set of

atlas and subject image sets as above, but for a different individual subject in this

experiment. The original FLAIR image (Fig. 3.5(e)) for this experiment has a voxel

size of 0.82× 0.82× 4.4 mm3, which is much larger than the MPRAGE voxel size of

0.82× 0.82× 1.17 mm3. Registering the original FLAIR to the MPRAGE requires

an upsampling by a factor of four in the through-plane direction. Upsampling via

interpolation (trilinear, in this case) results in blurring in the through-plane direction.

This blurring is clearly visible in the original FLAIR image in Fig. 3.5(e), especially

in the ventricles. It is also visible to some extent in right posterior ventricle region
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Subject T1w T2w PDw Synth. FLAIR Real FLAIR

(a) (b) (c) (d) (e)

Figure 3.5: (a) Real T1w image, (b) real T2w image, (c) real PDw image, (d) synthetic
FLAIR, (e) real FLAIR. The real FLAIR shows motion artifacts in (e), which are not
present in the synthetic FLAIR (d). The real FLAIR in (e) shows blurring because of
interpolation in order to match the high resolution T1w.

of Fig 3.4(e). The blurring is also a cause of gross misalignment between the high

resolution images and the low resolution FLAIR images. Such misalignment has

the potential to adversely affect segmentation results. The synthetic FLAIR image

is created by applying Ψ-CLONE on a high resolution T1w image (1.17 mm slice

thickness) and intermediate resolution PDw and T2w images (2.2 mm slice thickness).

Thus, it is better aligned to the high resolution images and is at a higher resolution

than the acquired FLAIR image. Fig. 3.5(d) shows the synthetic FLAIR along with

the true FLAIR in Fig. 3.5(e). Visually it is apparent that it is better aligned to the

rest of the images than the true FLAIR.

3.6 Summary and Discussion

We have proposed an MR image pre-processing framework, Ψ-CLONE, which allows

us to perform MR image synthesis and scanner standardization. Ψ-CLONE represents
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a new direction in image synthesis. It works by estimating relevant information about

the imaging parameters of a given image and incorporating these into a synthesis

that respects MR image formation resulting in more correct synthetic images then

previous synthesis methods. Prior work in MR image synthesis has ignored the

image acquisition process when solving the synthesis problem. Our use of imaging

equation approximations and the underlying NMR tissue parameters to construct

atlases that are adaptive to the subject image is a unique feature. In Sections 3.3

and 3.4, we demonstrated the significantly higher quality of image standardization and

synthesis than the existing state-of-the-art methods. In addition to this in Section 3.5,

we showcased advanced capabilities of our synthesis approach—specifically FLAIR

synthesis—which cannot be accomplished by methods other than REPLICA.

Application of Ψ-CLONE for image synthesis can be used to enhance and expand

multimodal datasets for better image processing. Improved resolution for modalities

like FLAIR and DSE pulse sequences which are often acquired at a low resolution can

prove useful for tasks such as segmentation and registration. In addition, the ability

to replace an artifact-ridden image with a synthetic one for better and more consistent

processing of the entire dataset will help in providing more usable subject data, which

should in turn help improve the statistical power of any derived scientific results.

In addition to improving the quality and capabilities of MR image synthesis, Ψ-

CLONE is also quite fast, taking less than five minutes to synthesize a new image. In

comparison, state-of-the-art methods like MIMECS take around 2–3 hours on the same
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computational resources. This makes Ψ-CLONE well-suited as a quick pre-processing

tool or as an MR intensity standardization that can be done on the scanner prior to

any other processing. The nonlinear simultaneous equation solver can sometimes lead

to local minima in the absence of a good initialization. The robustness of estimation

is something we want to work on in the immediate future, by incorporating more

accurate models of the pulse sequence equations. This will help improve the pulse

sequence parameter estimation. The atlases used in the experiments are obviously of

critical importance in the quality of the synthesis that can be performed. As such

we are working to acquire high resolution data from a small cohort of subjects on

multiple scanners to have a complete picture of the NMR properties at various field

strengths as is technically feasible.

Ψ-CLONE has certain limitations which we would like to address in the future.

First, it requires a segmentation of the input image(s) to estimate the imaging equation

parameters. Specifically, the pulse sequence parameter estimation depends on tissue

class means provided by a fuzzy k-means algorithm on T1w images. For typical T1w

sequences like MPRAGE, the fuzzy k-means algorithm is fairly robust in providing

the class mean intensities. In the rare case that the algorithm fails, the estimated

imaging parameters tend to have very large errors, which results in the formation of

inferior synthetic atlas images that can be easily spotted as inaccurate and rectified at

the end of Step 2. Some of the earlier image synthesis methods [24, 26, 28] had similar

drawbacks that have since been overcome by dictionary selection techniques and use
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of a higher-dimensional space to normalize image patches [4]. Incorporation of these

ideas is feasible, but we have yet to explore them. However, unlike MIMECS [4] we

do not require a WM peak normalization step.

Second, our pulse sequence parameter estimation method allows us to generate

images of high quality and similar characteristics to the ground truth images (see

Section 3.3 for experiments). However, the estimated parameters are not identical to

the truth for various reasons including the use of theoretical and approximate pulse

sequence equations. This is not ideal, as even though the metrics we use to measure

the similarity of the images are commonplace; they may have a subtle deficiency that

could only be revealed by a far larger and more rigorous study. Our estimation of

PD, T1, and T2 maps also requires (a) 3 different types of pulse sequence images,

preferably T1w, PDw, and T2w images, of an acceptable resolution (the worst we

have worked with is 1× 1× 5 mm3 voxel-size in experiments described in [63] for a

different application), (b) known pulse sequence name (for example SPGR or DSE),

and (c) known imaging equation or approximation for each of the three. These can be

potentially restrictive in some clinical scenarios and we are working towards relaxing

these requirements.

A third deficiency is our chosen regression model (random forests), it is being used

because of it expediency and its ability to handle nonlinear intensity transformations.

When predicting, random forest regression takes the mean of all the training data that

accumulates in a leaf node during model training. In addition, when using the random
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forest the output value from each tree is averaged to give the final prediction from the

regression. Clearly all these averages diminish the quality of the results, which can

be seen in Fig. 3.4 where the synthetic result appears smoother than the truth. This

could be addressed by modifying the random forest to do a linear fit of the data in

the leaf nodes or through the use of a different regression approach. Finally, for the

next generation of Ψ-CLONE, we intend to replace the random forest regression in

Ψ-CLONE by REPLICA. We have investigated the parameter selection for REPLICA

extensively and have acquired the necessary knowledge to carry out this replacement.

We noted in Chapter 2 that REPLICA also has its deficiencies. The independent

voxel-by-voxel prediction does not explicitly model the dependencies between voxels.

The image produced by REPLICA is useful in that it performs admirably as a

substitute input for a real image, however, it is not obvious if the resulting synthetic

image is “the best” by any well-defined criterion. Next, in Chapter 4, we provide a

description of a probabilistic formulation of image synthesis called SynthCRAFT. In

SynthCRAFT, we model the conditional distribution of the to-be-synthesized image

given the available images. The parameters of this distribution are stored in the leaves

of a regression tree that we learn from the training data. Feature design experience and

random forest regression in REPLICA and Ψ-CLONE helped us to understand why

storing parameters in the leaves of a regression tree is a good idea. SynthCRAFT needs

sophisticated parameter learning and inference strategies that we describe further in

Chapter 4.
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In summary, we have described a new MR synthesis approach which incorporates

principles based on the pulse sequence equations. The framework is validated on syn-

thetic and real data demonstrating its superior synthesis to state-of-the-art approaches.

In addition, we have demonstrated the capability to synthesize the FLAIR pulse

sequence, which is a noted deficiency of the MIMECS algorithm [4]. Our estimation

of pulse sequence parameters to generate a better atlas image could be used by any

synthesis approach [4, 24,31,36,48,82] to help improve results immediately.
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SynthCRAFT: Tree-encoded

Conditional Random Fields for

Image Synthesis

All image synthesis approaches that are based on an intensity transformation [4,

37, 43], including REPLICA (described in Chapter 2) and Ψ-CLONE (described in

Chapter 3), predict a synthetic image, voxel-by-voxel. Individual voxel predictions in

the synthetic image are assumed be independent of each other, given the respective

feature vectors. However, voxel intensities in brain MRI images exhibit considerable

spatial correlation. Neighboring voxels tend to belong to the same tissue and thus

have similar intensities. Long range dependencies may also exist in the image as the

brain structure is bilaterally symmetric to some extent. These correlations are not
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modeled by state-of-the-art image synthesis algorithms. MIMECS [4] considers a small

patch in an image of contrast C1 and reconstructs it with sparse coefficients applied

to C1 dictionary elements. These same coefficients are then applied to corresponding

C2 dictionary elements to synthesize a patch of the C2 contrast and only the central

voxel value of the patch is used to create the synthetic image voxel-by-voxel. Since

neighboring patches in the C1 contrast image are going to be correlated, it is likely that

their sparse reconstructions are also going to be correlated. However, these correlations

are not modeled explicitly in MIMECS. Furthermore, long range dependencies are

ignored completely. The multi-scale framework and long range context features

introduced in REPLICA attempt to include these correlations in the C1 contrast

features, but the prediction for these features is carried out independently for each

voxel; any resulting correlation in the synthesized voxels of the C2 contrast image is

not modeled explicitly.

MIMECS, REPLICA, and other intensity transformation-based methods produce

a synthetic image in a somewhat ad-hoc manner. It is not easily justifiable why a

certain synthetic image is the best, aside from using empirical results to prove its

utility and distance to the ground truth image. Roy et al. [37] provide a probabilistic,

generative model of patch selection and using this framework they can answer the

question of why a particular synthetic patch is better than any other patch. They

choose the most probable patch as estimated by their model. However, their approach

does not answer the question of why an entire synthetic image is optimal. In this

126



CHAPTER 4. SYNTHCRAFT

chapter, we show how to specify a conditional distribution of the to-be-synthesized

subject image given the available subject images. Knowing this distribution enables

us to (a) produce a synthetic image that is optimal in the sense of maximizing this

probability distribution and (b) evaluate whether any other synthetic image is as

“good” as the best we can get.

4.1 Background

Probabilistic modeling spatial dependencies in images has been a fertile area of

research for many years in the medical imaging and computer vision community [83].

We focus on modeling spatial interactions though graphical models that define a

probability distribution over the entire image. Brain MRI images are usually very

large with millions of foreground voxels. This makes modeling all possible spatial

dependencies between all voxels computationally intractable. Instead we focus on

models that can specify local neighborhood dependencies which can build up together

to represent a global distribution defined over an entire image. One of the most

popular ways to model images with spatial dependencies has been to use Markov

random fields (MRFs).

An MRF is defined over a graph G = (V,E), where V and E are the sets of vertices

and edges respectively of G. In an image synthesis context, the set of all voxels i in

the image domain form the vertex set V . A pair of voxels (i, j), i, j ∈ V , that are
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yi
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yi−1

xi−1

yi+1
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Figure 4.1: A typical hidden MRF. Shown here is the voxel location i with two
neighbors, i − 1 and i + 1. The observed data at these voxels is given by x. The
underlying unknown yi form the MRF.

neighbors according to a predefined neighborhood form an edge in E. An edge between

two vertices indicates dependence between the random variables at those vertices. Let

x be the observed data. In the image synthesis context, x represents the collection of

available images from m pulse sequences, from which we want to synthesize a new

image. At each vertex i, we have an observation xi, which is a vector of m values.

Let y = {yi} i ∈ V be a continuous-valued random variable over V that represents

the synthetic image we want to predict. The posterior distribution is given by p(y|x).

The posterior distribution is important because once we know all its parameters, we

can estimate the synthetic image ŷ that has the maximum probability value according

to p(y|x). This estimation is known as maximum a-posteriori (MAP) estimation. It is

also called as inference on the posterior distribution, and is the prediction step. The

posterior distribution can be expressed using Bayes’ rule as follows,

p(y|x) ∝ p(y,x) = p(x|y)p(y). (4.1)
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A probabilistic modeling and inference problem can be approached in two ways:

1. Specify the parameters of the joint distribution p(x,y) and learn them from

the training data. Given a test case, use the learned joint distribution to

perform MAP estimation on it, since the joint distribution is proportional to

the posterior distribution p(y|x) in Eqn. 4.1. This approach is referred to as

generative modeling of the data, where both the observations and the hidden

variables are jointly modeled.

2. Specify the parameters of the posterior distribution p(y|x) directly. In this

case, we model only the conditional distribution. We learn how to build such a

conditional distribution from training data. Given a test case, we can perform a

MAP estimate directly on this distribution. This modeling approach is referred

to as discriminative modeling.

Generative modeling of data involves specifying the details of the joint distribution,

which according to Eqn. 4.1 involves specifying two distributions p(x|y), the likelihood,

and p(y), the prior distribution. The distribution p(y) is the prior for the unknown

synthetic image and is modeled as an MRF. The Markov assumption can be described

as follows,

p(yi|yV \i) = p(yi|yNi
), (4.2)

where V \ i denotes the set of all vertices excluding i, and Ni represents the neighbor-

hood of voxel i. Using the Hammersley Clifford theorem [83], we can express p(y) as
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a Gibbs distribution,

p(y) =
1

Zy

exp(− 1

T
U(y)), (4.3)

where Zy is the normalizing constant called the partition function, U(y) is the energy

function, and T is a constant that is referred to as the temperature. The energy

function U(y) is given by,

U(y) =
∑
c∈C

Vc(y), (4.4)

where Vc(y) are known as clique potentials, defined for each clique c in a set of all

cliques C. A clique in this graph refers to a subset of vertices in which each vertex

is connected to the remaining vertices in the subset. In most MRF-based solutions,

two types of cliques are commonly considered. Single vertex cliques and two-vertex

or pairwise cliques. In the hidden MRF shown in Fig. 4.1, there are three single

vertex cliques, {i− 1}, {i}, and {i+ 1} respectively. There are two cliques of size two,

which are the neighboring voxel pairs {i− 1, i} and {i, i+ 1}. In typical hidden MRF

problems, the likelihood term, p(x|y) in Eq. 4.1, is assumed to be factorizable over

the graph vertices i, i.e. p(x|y) =
∏

i p(xi|yi). This is visually apparent in Fig. 4.1;

where xi are assumed to be independent of each other given yi as there is no edge

between them. It is generally a sub-optimal assumption for image synthesis but has

been implicitly made by MIMECS and REPLICA. To understand why, let us consider

that yi, the synthetic intensity at voxel i, indicates the tissue type at voxel i. The

neighboring voxels of i, Ni are likely to have observed data xN (i) that are similar to xi,
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since they likely belong to the same tissue and have similar yNi
too. Hidden MRF’s

can model dependence between yi and yNi
, but dependencies between the observed

data conditioned on yi are not modeled.

Another limitation of the hidden MRF model is in the specification of the prior p(y).

In typical image denoising applications, the prior in Eq. 4.3 is described using pairwise

clique potentials [83]. Typical pairwise potentials are designed to ensure smoothness

and penalize differences among neighboring voxels. For example, a common pairwise

potential used is quadratic, i.e. U(yi, yj) = λ(yi − yj)
2. Quadratic potentials tend to

oversmooth sharp edges. More robust versions using a truncated quadratic [84, 85]

have been proposed to mitigate oversmoothing. However, a more flexible approach

would be to employ the observed data x, and use the observed transitions between the

neighbor intensities to modulate the edge penalty in y in a data-driven manner [86].

It is clear from Fig. 4.1 that the observed data do not affect how the underlying

hidden variables yi interact with each other. Therefore, instead of using a generative

hidden MRF to model the image synthesis problem, we propose to use a discriminative

conditional random fields-based solution.

To recapitulate, generative modeling entails modeling the joint distribution p(y,x),

which in turn entails modeling the prior p(y) and the data likelihood p(x|y). As we

have discussed, modeling both these distributions requires simplifying assumptions,

which end up simplifying the model and making it too restrictive for the application

at hand. Instead of modeling the joint distribution, it is sometimes much easier to
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directly model the posterior distribution p(y|x), which is what is finally sought during

prediction in a MAP-MRF framework. Learning a generative model without the

simplifying independence assumptions can be hard because the model itself can be

very complex. In contrast the posterior distribution can be relatively simpler to model

and learn [87]. Vapnik [88] has argued with regards to solving classification problems

that “one should solve the [classification] problem directly and never solve a more

general problem as an intermediate step [such as modeling the likelihood p(x|y)]”.

Ng et al. [89] compared the solutions to a linear classification problem solved in a

discriminative fashion (logistic regression) versus in a generative fashion (naive Bayes),

and observed that discriminative learning has a lower asymptotic error, but generative

learning might reach its higher error limit, faster. Thus, we propose that if we want

to specify distributions of images that model spatial dependencies for the purpose of

image synthesis, modeling the posterior distribution directly is a better design choice.

The concept of conditional random fields was invented for this very purpose and we

describe it next.

4.1.1 Conditional Random Fields

Conditional random fields (CRF) were proposed by Lafferty et al. [90] to directly

model the posterior distribution p(y|x) in the context of text sequence labeling. The

posterior p(y|x) was itself modeled as a Gibbs distribution, in contrast to hidden

MRF’s where the prior, p(y) is modeled as a Gibbs distribution. CRF’s that were
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trained discriminatively for image segmentation were first proposed by Kumar et

al. [86], wherein they extended the 1D CRF’s of Lafferty et al. [90] to 2D image data

and showed improved segmentation.

A CRF is defined as follows: (y,x) is a CRF if, conditioned on x, yi exhibit the

Markov property, i.e.,

p(yi|x,yV \i) = p(yi|x,yNi
), (4.5)

where V \ i denotes the set of all vertices excluding i and Ni = {j | (i, j) ∈ E}, is the

neighborhood of i. Assuming p(y|x) > 0,∀ y, from the Hammersley-Clifford theorem,

we can express this conditional probability as a Gibbs distribution that is factorizable

with known clique potentials as follows [83],

p(y|x) = 1

Z
exp[−{

∑
i∈V

EU(yi,x; θ) +
∑
i∈V

∑
j∈Ni

EP(yi, yj,x; θ)}]. (4.6)

Equation 4.6 assumes single vertex clique potentials and pairwise clique potentials.

The single vertex cliques at each voxel location i ∈ V define a unary potential EU or

association potential as defined by Kumar et al. [86]. The pairwise clique potential

EP(yi, yj,x; θ) is defined between a vertex i ∈ V and its neighbor j ∈ Ni, also referred

to as interaction potential by Kumar et al. [86]. Z is the partition function and θ is

the set of parameters that define both these potentials. Note the presence of x in the

definition of potentials in Eqn. 4.6 versus the lack of x in the MRF prior (Eqn. 4.3

and Eqn. 4.4).
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The unary potential EU(yi,x; θ) can be thought of as a measure of how likely the

vertex i is to get a value of yi, given the entirety of the observed data x. In this aspect,

it is different from a typical hidden MRF (see Fig. 4.1), where the likelihood of a

vertex i having the value yi, is directly dependent on the observed data at i, but not

on other vertices. To be more specific, let f be a function that calculates a feature

vector at each voxel i of the observed data x. We denote fi(x) to be the feature

vector calculated at vertex i. For instance, it could be the intensities of a small patch

surrounding the vertex i or something more complicated like a SIFT descriptor [91].

The major point is that fi(x) can use information from observed data x of all the

vertices to calculate a feature vector at the vertex i. In most CRF frameworks [86],

EU(yi,x; θ) is directly modeled as a log-likelihood, i.e.,

EU(yi,x; θ) = log p(yi|fi(x)). (4.7)

Calculating such log-likelihoods can be easily achieved by learning a regression, which

predicts yi given the corresponding feature vector fi(x).

The pairwise potential term EP(yi, yj,x; θ) controls the interaction between the

values yi and yj attained by neighboring vertices i and j, given the observed data

x. In smoothing MRF’s this term is sometimes set to be proportional to (yi − yj)
2,

which is quadratic [83, 85]. This ensures that neighboring vertices have similar values,

thereby ensuring smoothing. A quadratic pairwise potential is known to oversmooth
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by imposing a high penalty for sharper edges, thus resulting in blurring of the edges in

addition to denoising. Robust penalty functions such as the Huber potential, which is

proportional to min{(yi − yj)
2, β2 + |yi − yj − β|}, where β is a parameter, have been

devised to mitigate the oversmoothing. In a CRF however, we can leverage the observed

data x to modulate the penalty. For instance, we can design a pairwise potential that

takes into consideration the neighboring feature vectors fi(x) and fj(x), and compute

a quantity κ = β
||fi(x)−fj(x)||2 . We can then define EP(yi, yj,x; θ) = κ(yi − yj)

2. If the

neighboring feature vectors are similar, κ is high and the penalty induced therefore is

also high, resulting in smoothing. If the neighboring feature vectors are very different,

hinting to the existence of an edge, κ is low and the penalty induced therefore is also

low, and does not result in oversmoothing the edge.

To summarize, a CRF distribution is commonly specified by defining two main

clique potentials: unary and pairwise. The unary potential can be calculated by

training a regressor and calculating the log-likelihood. The pairwise potential controls

the interaction between values attained by neighboring vertices and can be defined

in a data-dependent manner as opposed to typical hidden MRF pairwise potentials.

CRFs are more flexible than hidden MRFs and allow for more creative definitions of

the unary and pairwise potentials, as befits a task. Next we describe Gaussian CRF’s

and their application in image synthesis.
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4.1.2 Gaussian Conditional Random Fields

If the unary and pairwise potentials EU(yi,x; θ) and EP(yi, yj,x; θ), respectively,

in Eqn. 4.6 are quadratic functions of y, then it is possible to express the conditional

distribution p(y|x) as a multivariate Gaussian,

p(y|x) = 1

(2π)
|V |
2 |Σ| 12

exp(−1

2
(y− µ(x))TΣ(x)−1(y− µ(x)))

=
1

Z
exp(−1

2
(yTA(x)y)− b(x)Ty). (4.8)

The parameters A(x) and b(x) are dependent on the definitions of unary and pairwise

potentials. The mean µ(x) and the covariance Σ(x) are sometimes referred to in

literature as mean parameters [92]. While performing parameter estimation, it is

computationally hard to estimate the mean parameters; hence, the distribution is

expressed in terms of A(x) and b(x), which are sometimes referred to as the canonical

parameters.

Any problem that is cast in the framework of probabilistic graphical models needs

to the solutions to three sub-problems: (1) parametrization, (2) parameter learning,

and (3) inference. Parametrization refers to the specification of parameters that will

eventually construct the distribution parameters. In case of Eqn. 4.8, it means defining

a procedure to construct the matrices A(x) and b(x) given x. Parameter learning

is the capability of efficiently learning those parameters given training data. Again

with reference to Eqn. 4.8, parameter learning involves estimating the parameters that
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make up A and b. Inference means the test-time prediction for new data using the

parameters learned from the previous two steps. In Eqn. 4.8, this means given test data

x̂, calculate A(x̂) and b(x̂) and then use these to estimate ŷ. In the image synthesis

context, the inference task consists of predicting ŷ, which is the synthetic image

generated from the observed test data x̂. From the parameter learning procedure,

we can determine all the parameters of the posterior distribution p(y|x̂). We can

simply choose the ŷ that maximizes the posterior distribution, thus making it a MAP

estimation. Since p(y|x̂) is Gaussian, the MAP estimate is also the mean of the

distribution E(y|x̂). Thus, we can summarize the inference step as,

ŷ = argmax p(y|x̂) = E(y|x̂). (4.9)

The MAP estimate can be determined by differentiating Eqn. 4.8 with respect to y

and setting the derivative to zero. This gives the following closed form solution for ŷ,

ŷ = A(x̂)−1b(x̂). (4.10)

Previous research on Gaussian Conditional Random Fields (GCRFs) has focused

on different ways to solve the three problems of parameterization, parameter learning,

and inference. GCRF models were first investigated by Tappen et al. [93] for denoising

natural images. In their model, the unknown, denoised image was y, whereas the

observed, noisy image was x. They expressed p(y|x) as a Gaussian with weighted

137



CHAPTER 4. SYNTHCRAFT

quadratic differences between different filtered versions of y and x as follows,

p(y|x) = 1

Z
exp(−

F∑
i=1

wici ∗ (y− x)2), (4.11)

where ci corresponds to a particular derivative filter that is convolved with the

images. It is not clear from their method description whether they included a

pairwise potential in their framework. Given this parametrization, parameter learning

using maximum likelihood was deemed infeasible. The authors instead minimize

the quadratic energy (which is the term in the exponent) and ignore the partition

function Z. The training time reported for a small amount of training data on a

computing cluster was several hours [93]. Given a test image, inference was carried

out, by minimizing the quadratic energy in Eqn. 4.11 using a conjugate gradient solver.

There are many limitations to this model. In the context of denoising, a quadratic

penalty function tends to oversmooth the sharp edges. The authors claim to mitigate

this problem with the weights wi assigned to each of the derivative filters ci. The

parameter learning is also not optimal since energy-based minimization ignores the

effect of parameters present in partition function Z, which needs to be evaluated and

the evaluation is often intractable.

Recently, Jancsary et al. [94] came up with regression tree fields (RTF) to model

GCRFs, by leveraging on certain theoretical insights gleaned from Wainwright et

al.’s [92] work on exponential families of graphical models. RTFs parametrize A and b

138



CHAPTER 4. SYNTHCRAFT

by constructing regression trees from training data. For example, the unary potential

EU(yi,x; θ) from Eqn. 4.6 can be defined as follows;

EU(yi,x; θ) =
1

2
(aL(i)y

2
i )− bL(i)yi, (4.12)

where {aL(i), bL(i)} ∈ θ are the parameters defined at the leaf L(i). L(i) is the leaf

where the feature vector fi(x) extracted for voxel i from the observed data x, lands

after having been passed through successive nodes of a learned regression tree Ψ.

The pairwise potentials are also learned in a similar manner. Given a neighborhood

configuration, RTFs build a separate tree for each type of neighbors. Thus, if we

consider a neighborhood system of 26 neighbors in 3D, 26 trees need to be learned.

Each pairwise tree is learned from training data that includes concatenated feature

vectors [fi(x), fj(x)] from paired neighbor voxels i and j. The pairwise potential for

i-j neighbors is defined in RTFs as follows,

EPr(yi, yj,x; θ) =
1

2
(αL(ij)r

y2i + βL(ij)r
yiyj + γL(ij)ry

2
j )−ωL(ij)1r

yi −ωL(ij)2r
yj, (4.13)

where{αL(ij)r
, βL(ij)r

, γL(ij)r, ωL(ij)1r
, ωL(ij)2r

} ∈ θ, L(ij) is the leaf of a regression tree

Ψr, which is trained using feature vectors [fi(x), fj(x)] paired with corresponding

dependent values [yi, yj ], r ∈ {1, . . . , 26} is the neighbor type, and j is the rth neighbor

of i. Thus, it is not a typical regression tree that is trained on a 1D output; instead

it is a multi-output regression tree. If we consider 26 neighbors, we need to train
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26 such trees. Given the above parametrization, parameter learning is performed

using pseudo-likelihood maximization [95]. Maximum likelihood estimation for the

GCRF in Eqn. 4.8 needs to be done under the constraints that A is positive definite.

However, in order to do this, we need to calculate the mean parameters µ = A−1b and

Σ = A−1 + bbT . The complexity of a matrix inverse is O(|V |3), where |V | × |V | is

the size of A. |V | corresponds to the number of foreground voxels in an image (∼ 107)

and computing the inverse is not feasible. Thus maximum likelihood estimation is not

feasible, which is why the authors [94] carried out pseudo-likelihood maximization.

Given test data x̂, the matrices A(x̂) and b(x̂) are constructed using the different

regression trees and the learned parameters in their leaves. Inference is done by solving

the linear system in Eqn. 4.26 using a conjugate gradient descent approach.

Our approach builds upon RTFs in a way that makes it applicable for large amounts

of high-dimensional data. Each of the pairwise potential trees in RTFs needs millions

of 2 × d-sized feature vectors to train, where d is the length of the feature vector

fi(x) extracted at each voxel. Instead of encoding the unary and multiple pairwise

potentials in different trees, we encode all the potentials in a single tree trained with

millions of d-sized feature vectors. In Section 4.2, we describe our parametrization,

parameter learning, and inference strategies. Parameter learning for our model is also

based on pseudo-likelihood maximization. The inference procedure is similar to the

one described in RTFs except, since we only have a single tree, the construction of

A(x̂) and b(x̂) matrices is much faster and consumes less memory. We refer to our
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method as Synthesis with Conditional Random Field Tree or SynthCRAFT.

4.2 Method

4.2.1 Problem Setup

(a) xa1 (b) ya

(c) xs1 (d) ŷs

Figure 4.1: A typical synthesis problem setup. In the first row, we show the atlas
images xa and ya, used for training. The second row shows a given test subject image
xs. The synthesis task involves estimating the unknown image, ŷs.

Before we describe our approach, we restate the synthesis problem and provide the

notation we use. Observed data is denoted by x. Hidden values are referred to by y. In

the image synthesis scenario, we are given a collection of observed, co-registered, subject

images xs = {xs1,xs2, . . . ,xsm}, generated by modalities Φ1, . . . ,Φm, respectively. The

image synthesis task entails predicting the unknown image ŷ of a target modality Φt.
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Given a test image set x̂, our strategy is to determine the conditional distribution

p(y|x̂) and output the MAP estimate ŷ as the expected synthetic image. In Fig. 4.1,

we show an image synthesis task of generating T2w images from input T1w images.

The atlas image collection in Figs. 4.1(a) and 4.1(b) just has two images, xa = {xa1}

and ya. The given subject image is shown Figs. 4.1(c), while the goal is to predict

the unknown subject T2w image denoted by the empty box in Fig. 4.1(d). Next, we

describe how to build a regression tree from the training data and encode the CRF

parameters in it.

4.2.2 Unary Regression Tree Construction

Given training data comprising images from input and target modalities, as shown

in Fig. 4.2, we extract features fi(xa) from the input modalities and pair them with

corresponding target modality intensities yi, where i is the voxel location. The feature

fi(xa) consists of two parts, 1) a small, local 3× 3× 3-sized patch pi(xa), and 2) a

context feature vector ci(xa), as described in Chapter 2. A small 3D patch, denoted

by pi(x) = [pi(x1), . . . ,pi(xm)], where the size of the patch is typically 3 × 3 × 3,

provides us with local intensity information from all the m input modalities. We

construct the context descriptor ci(x) as described in Section 2.2.1. The final feature

vector is thus fi(x) = [pi(x), ci(x)]. fi(x) is paired with the voxel intensity yi at i in

the target modality image y to create training data pairs (fi(x), yi). We train the

regression tree Ψ on this training data using the algorithm described by Breiman [42].
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Step 1xa

Training Data

fi(xa) = [pi(xa), ci(xa)]

Target ya

yi

Train Reg. Tree

L(i)

ij

Neighborhood of voxel i, Ni

Feature vector fi(xa)

Lr(i, j)

Feature vector fj(xa)

Step 2

Figure 4.2: Construction and encoding of CRF parameters within a regression tree.
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Once the tree is constructed, we initialize two parameters al and bl at each of the

leaves l ∈ LΨ. These parameters will be used to define the unary potential as we

explain in Section 4.2.4.

Algorithm 4 summarizes the unary regression tree construction.

Algorithm 4 SynthCRAFT Training: Learning Unary Regression Tree

1: Data: Rigidly co-registered atlas images xa and ya in the MNI space
2: Extract 3× 3× 3-sized patches from xa

3: Extract context descriptors from corresponding voxels
4: Concatenate to create joint feature vector set
5: Extract corresponding voxel intensities from ya to complete training data
6: Train a regression tree Ψ on this training data
7: For each leaf node lu in Ψ, initialize parameters {alu , blu}

4.2.3 Construction of Pairwise Regression Subtrees

Once we have constructed the unary regression tree, we construct pairwise regression

sub-trees at each of the leaves of the unary regression tree. Consider a neighborhood

system with |Ni| number of neighbors. In a typical 3D image, we consider |Ni| = 26

for all voxels i. We depict a simpler scenario in Fig. 4.2. Consider a neighborhood

system with 4 neighbors, north, east, south, and west, shown in different colors on

the image grid. The unary regression tree results in formation of leaf nodes, shown in

green in Fig. 4.2. Let the feature vector fi(xa) fall in a leaf node, which we denote by

L(i). Note that feature vectors calculated at many other voxels might also end up

in L(i). Next we consider all the same type of neighboring voxels j of the voxels i

whose feature vectors ended up at L(i). A neighbor type r ∈ {1, . . . , |Ni|} for a voxel

144



CHAPTER 4. SYNTHCRAFT

i implies one of its n (= |Ni| = |N |) neighbors. For example, a neighborhood system

with four neighbors (north, south, west, east) has four types of neighbors, and hence

four types of edges. In Fig. 4.2, we consider the western neighbor j (in magenta) of

voxel i. We accumulate feature vectors fj(xa) of all j, where the feature vector fi(xa)

has landed in the leaf L(i). These fj(xa) are paired with the target modality value yj.

Using these as the training data, we train a regression tree Ψr(L(i)) (at leaf L(i), for

each type of neighbor r). Thus with four neighbors, we have four regression sub-trees

at L(i) in Fig. 4.2. In a 3D scenario, with 26 neighbors we would have 26 sub-trees.

These sub-trees are designed to be ‘shallow’, which means their depth is limited to be

3–5. They are also very quick to train as the number of training fj(xa) are equal to the

number of fi(xa) at L(i) and these can be specified via a parameter while constructing

the unary regression tree. After constructing the pairwise sub-trees for all types of

neighbors, we note the leaf Lr(i, j), where the feature vector of neighbor j of type r,

fj(xa) ends up. At Lr(i, j), we initialize the parameters which will help in defining

the pairwise potential, namely, αLr(i,j), βLr(i,j), γLr(i,j), ωLr1(i,j), and ωLr2(i,j).

Algorithm 5 summarizes the procedure for constructing pairwise regression sub-

trees.
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Algorithm 5 SynthCRAFT Training: Learning Pairwise Regression Sub-Trees

1: Data: Unary regression tree Ψ learned from atlas images
2: for neighbor type r = 1:|N | do
3: for each leaf node lu ∈ Ψ do
4: Determine the voxel locations i of all the training samples in lu
5: Extract feature vectors fj(xa) from j, where j the rth neighbor of i
6: Train a shallow tree Ψr(lu) with all extracted fj(xa)
7: for each leaf node lp ∈ Ψr(lu) do
8: Initialize parameters {αlp , βlp , γlp , ωlp1, and ωlp2}
9: end for
10: end for
11: end for

4.2.4 Parametrization

Using the unary regression tree and its pairwise regression sub-trees we can now

define the unary and pairwise potentials. The unary potential is defined as follows.

EU(yi,x; θ) =
1

2
(aL(i)y

2
i )− bL(i)yi, (4.14)

where {aL(i), bL(i)} ∈ θ are the parameters defined at the leaf L(i). We can compare

Eqn. 4.14 with the generic definition of a unary potential in Eqn. 4.12. The right

hand side term p(yi|fi(x) in Eqn. 4.12 corresponds to the quadratic term in the right

hand side of Eqn. 4.14. Thus we are modeling the distribution of yi’s in the leaf L(i)

as a Gaussian distribution with the parameters aL(i) and bL(i). This is a reasonable

model for the samples in the leaves of a regression tree as the splitting process in

a regression tree tries to ensure that the sample distribution variance inside a node

reduces as we go deeper in the tree. If the features are sufficiently disambiguating,
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then the distribution of samples in the leaf nodes is close to being a mono-modal

Gaussian and hence can be modeled as such.

The pairwise potential for neighbors of type r is also defined in a quadratic form

as follows,

EPr(yi, yj,x; θ) =
1

2
(αLr(i,j)y

2
i +βLr(i,j)yiyj+γLr(i,j)y

2
j )−ωLr1(i,j)yi−ωLr2(i,j)yj, (4.15)

where {αLr(i,j), βLr(i,j), γLr(i,j), ωLr1(i,j), ωLr2(i,j)} ∈ θ are the parameters defined at

the leaf Lr(i, j). The pairwise potential usually acts as a smoothing term, but can

also be designed in a more general manner. For instance, EP(yi, yj,x; θ) = (yi − yj)
2

would imply that neighboring intensities yi and yj will be forced to be close to each

other when estimating y that maximizes the posterior distribution p(y|x). Thus, if

there is an edge present at that location in the input x, it will be oversmoothed in

the synthetic result ŷ, which is undesirable. In our model, the parameters of this

quadratic potential are dependent on the leaves Lr(i, j) where fj(xa) falls, given the

leaf L(i) where fi(xa) has fallen. Neighboring feature vectors fj(xa) that are similar to

fi(xa) will tend to fall in a certain pairwise sub-tree leaf while those that differ by a

lot will tend to fall in a different pairwise sub-tree leaf. Thus, if there is an edge in the

input data x, the parameters for the quadratic potential will be different compared to

when there is no edge, and hence will not result in oversmoothing. We define pairwise

potentials for each type of neighbor.
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To summarize, for each leaf lu in the unary regression tree, we have {alu , blu} that

belong to the parameter set θ. For each pairwise regression sub-tree leaf lp, we have

{αlp , βlp , γlp , ωlp1 , ωlp2} that also belong to θ. These account for all the parameters

that can be used to generate a GCRF distribution. Next, we describe a parameter

learning procedure that estimates these parameters in all leaves using a maximum

pseudo-likelihood procedure.

4.2.5 Parameter Learning

An ideal approach to learn parameters would be to perform maximum likelihood

estimation using the distribution in Eq. 4.8. However as mentioned in [94], estimation

of the mean parameters Σ and µ, requires calculation of A−1 (see Eq. 4.8). The size

of A is |V | × |V | where |V | is the number of voxels in y and for large 3D images,

|V | is of the order of ∼106, which makes the computation practically infeasible. We

follow [94] and implement a pseudo-likelihood maximization-based parameter learning.

Pseudo-likelihood is defined as the product of local conditional likelihoods,

θ̂MPLE = argmaxθ
∏
i∈V

p(yi | yNi
,x; θ). (4.16)
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The local conditional likelihood can be expanded as

p(yi | yNi
,x; θ) =

p(yi,yNi
,x; θ)∫

R p(yi,yNi
,x; θ)dyi

,

− log p(yi | yNi
,x; θ) = − log p(yi,yNi

,x; θ) + logZi, (4.17)

where Zi =
∫
R p(yi,yNi

,x; θ)dyi. Using the CRF definition in Eq. 4.6, we can write

− log p(yi,yNi
,x; θ) as

− log p(yi,yNi
,x; θ) = EU(yi,x; θ) +

∑
j∈Ni

EP(yi, yj,x; θ)

=
1

2
aCiy

2
i − bCiyi, (4.18)

where we can find aCi(Eq. 4.19) and bCi,(Eq. 4.20) by matching quadratic and linear

terms. Equations 4.19 and 4.20 show the contribution of interaction potentials induced

by the neighbors of voxel i. The r̃ denotes the type of edge which is symmetric to

type r. For example, if edges of type r are between voxel i and its right neighbor,

then r̃ denotes the type that is between a voxel and its left neighbor.

aCi = aL(i) + (
∑

j|(i,j)∈Er

αLr(i,j) +
∑

h|(h,i)∈Er̃

γLr̃(h,i)) (4.19)

149



CHAPTER 4. SYNTHCRAFT

bCi = bL(i) + (
∑

j|(i,j)∈Er

ωLr1(i,j) +
∑

h|(h,i)∈Er̃

ωLr̃2(h,i)

−1

2

∑
j|(i,j)∈Er

βLr(i,j)yj −
1

2

∑
h|(h,i)∈Er̃

βLr̃(h,i)yh).

(4.20)

The integral of exponential terms Zi in Eq. 4.17, is also known as the log partition

term. To optimize objective functions with log partition terms, we express Zi in its

variational representation using the mean parameters µi = [µi, σi] [92]. The parameter

set θCi = {bCi, aCi} that defines the exponential distribution is known as the canonical

parameter set. The conjugate dual function of Zi is defined as follows,

Z∗
i (µi, σi) = supθCi

⟨θCi,µi⟩ − Zi(θCi), (4.21)

where ⟨⟩ denotes inner product. Substituting θCi and the expression for

− log p(yi,yNi
,x; θ) from Eq. 4.18, we get the negative pseudo-likelihood (NPL) con-

tributed by voxel i to be,

NPLi(θ) = bCi(µi − yi) +
1

2
aCi(y

2
i − σi) + log(σi − µ2

i ) + log(2πe), (4.22)

where the mean parameters are given by µi =
bCi

aCi
and σi =

1
aCi

+ µ2
i .

Equation 4.22 is similar to the one in [94], as the overall model is a Gaussian

CRF. The objective function is linearly related to θ and has convex constraints [92,94].
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We minimize
∑

i∈V NPLi(θ) using constrained, projected gradient descent on the

parameters to ensure positive definiteness of the final precision matrix A(x) for any

input x, similar to the regression tree fields concept [94]. Training in our experiments

takes about 20–30 minutes with ∼106 samples of dimensionality of the order of ∼102

and neighborhood size of 26, on a 12 core 3.42 GHz machine. Algorithm 6 describes

the parameter learning process.

Algorithm 6 SynthCRAFT Training: Parameter Learning

1: Data: Unary regression tree Ψ and pairwise regression sub-trees Ψr(lu) for each
leaf node lu ∈ Ψ and each neighbor type r ∈ {1, . . . , |N |}

2: Initialize all the parameters present in the leaf nodes of the unary regression tree
and the pairwise regression sub-trees

3: Minimize the objective function in the form of negative pseudo-likelihood from
Eqn. 4.22 using projected gradient descent until convergence or 100 iterations,
whichever is earlier

4.2.6 Inference

Given a test image set x̂ = {x̂1, . . . , x̂m}, which are co-registered, we first extract

features fi(x̂) from all voxel locations i. Next, we apply the learned regression tree

Ψ to each of fi(x̂) to determine the leaf node L(i) in Ψ. Knowledge of L(i) tells

us the values of the unary potential parameters aL(i) and bL(i) that we need to use

while constructing the entries of A(x̂). Next, for each voxel i, we evaluate the feature

vectors fj(x̂) at each neighbor j ∈ Ni. For a neighboring voxel j of type r, we pass the

feature vector fj(x) down the shallow, pairwise regression tree Ψr(L(i)) for neighbor

type r in the leaf L(i). This gives us the leaf location Lr(i, j) where the neighboring
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feature vector lands, and hence, the values of all the pairwise potential parameters;

{αLr(i,j), βLr(i,j), γLr(i,j), ωLr1(i,j), ωLr2(i,j)}.

Using these, we can now construct theA(x̂) matrix element-by-element by matching

the quadratic terms of Eq. 4.8. The diagonal terms Aii(x̂) consist of coefficients of y2i

terms in the quadratic expansion, which can be obtained by matching the coefficients

of y2i coefficients in our unary and pairwise potentials, as shown in Eqn. 4.23.

A(x̂)ii = aL(i) +
∑

(i,j)|(i,j)∈Er

αLr(i,j) +
∑

(h,i)|(h,i)∈Er̃

γLr̃(h,i). (4.23)

The off-diagonal terms correspond to the coefficients of the yiyj terms Eqn. 4.8.

These can be obtained as follows,

A(x̂)ij =
1

2
(

∑
(i,j)|(i,j)∈Er

βLr(i,j) +
∑

(h,i)|(h,i)∈Er̃

βLr̃(h,i)). (4.24)

Finally, the b(x̂) vector is generated by matching the linear terms from Eqn. 4.8

as follows,

b(x̂)i = bL(i) +
∑

(i,j)|(i,j)∈Er

ωLr1(i,j) +
∑

(h,i)|(h,i)∈Er̃

ωLr̃2(h,i). (4.25)

The MAP estimate for p(y|x̂) as well as the conditional expectation E[y|x̂] is the

mean of the multivariate Gaussian described in Eq. 4.8. The expression for the mean
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and hence the estimate ŷ is given by,

ŷ = A(x̂)−1b(x̂). (4.26)

A(x̂) is a large (∼106×106), sparse (∼27×106 non-zero entries), symmetric positive

definite matrix. Thus, we use an iterative preconditioned conjugate gradient descent

method to solve the linear system in Eq. 4.26. The estimate ŷ is our synthetic image.

The inference process is summarized in Algorithm 7.

Algorithm 7 SynthCRAFT Prediction: Inference

1: Data: Subject image, x̂, unary regression tree Ψ and pairwise regression sub-trees
Ψr(lu) for each leaf node lu ∈ Ψ and each neighbor type r ∈ {1, . . . , |N |} with
learned parameters

2: Extract feature vectors fi(x̂) from subject image x̂
3: Apply unary regression tree Ψ to fi(x̂) and for all voxels i, determine the leaf

nodes L(i) where fi(x̂) land
4: for each leaf lu in Ψ do
5: Determine all voxels i that have feature vectors fi(x̂) that have landed at lu
6: for r = 1:|N | do
7: Let j be the rth neighbor, extract fj(x̂) and apply the corresponding pairwise

sub-tree Ψr(lu) to determine the pairwise sub-tree leaf nodes Lr(i, j) for all j
8: end for
9: end for
10: for voxels i in x̂ do
11: Construct diagonal entries of A(x̂) as per Eqn. 4.23
12: for r = 1:|N | do
13: Let j be the rth neighbor, construct the off-diagonal entries of A(x̂) as per

Eqn. 4.24
14: Construct entries of b(x̂) as per Eqn. 4.25
15: end for
16: end for
17: Estimate ŷ = A(x)−1b(x) using conjugate gradient algorithm
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(a) (b) (c) (d) (e)

Figure 4.1: Shown are (a) the input MPRAGE image, (b) the true T2w image,
and the synthesis results from the MPRAGE for each of (c) FUSION, (d) MIMECS,
and (e) SynthCRAFT (our method). The lesion (green circle) and the cortex (yellow
circle) in the true image are synthesized by MIMECS and SythCRAFT, but not by
FUSION.

4.3 Results

4.3.1 Synthesis of T2w Images from T1w Images

In this experiment, we used MPRAGE images from the publicly available Multi-

Modal MRI Reproducibility Resource (MMRR) data [50] and synthesized the T2w

images of the DSE sequence. The multimodal reproducibility data consists of 21

subjects, each with two imaging sessions, acquired within an hour of each other. Thus

there are 42 MPRAGE images. We excluded data of five subjects (ten images), which

were used for training and synthesized the remaining 32. We compared SynthCRAFT

to MIMECS [4] and multi-atlas registration and intensity fusion (FUSION) [33]. We

used five subjects as the atlases for FUSION with the parameters β = 0.5 and κ = 4

(fuse the four best patch matches).

We used PSNR (peak signal to noise ratio), universal quality index (UQI) [53], and

structural similarity (SSIM) [54] as metrics. UQI and SSIM take into account image
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Table 4.1: Mean and standard deviation (Std. Dev.) of the PSNR, UQI, and SSIM
values for synthesis of T2w images from 32 MPRAGE scans.

PSNR UQI SSIM
Mean (Std) Mean (Std.) Mean (Std)

FUSION 52.73 (2.78)∗ 0.78 (0.02) 0.82 (0.02)
MIMECS 36.13 (2.23) 0.78 (0.02) 0.77 (0.02)
REPLICA 50.73 (2.67) 0.89 (0.02)∗ 0.87 (0.02)∗

SynthCRAFT 49.73 (1.99) 0.86 (0.01)∗ 0.84 (0.01)∗

∗ Statistically significantly better than FUSION and MIMECS methods (α level of 0.01) using a right-tailed
test.

degradation as observed by a human visual system. Both have values that lie between

0 and 1, with 1 implying that the images are equal to each other. SynthCRAFT

performs significantly better than FUSION and MIMECS for all metrics except PSNR.

Figure 4.1 shows the results for all three methods along with the true T2w image.

FUSION results (Fig. 4.1(b)) have the highest PSNR, but produce anatomically

incorrect images, especially in the presence of abnormal tissue anatomy (lesions for

example) and the cortex. Overall, SynthCRAFT produces an image that is visually

closest to the true T2w image. SynthCRAFT is slightly worse than REPLICA, but

with better parameter selection it can be improved.

4.3.2 Synthesis for FLAIR Images

In this experiment, given atlas PDw, T2w, T1w, and FLAIR images, we trained

SynthCRAFT and applied it to subject PDw , PDw, and T1w images, to predict the

subject synthetic FLAIR image. We used our in-house multiple sclerosis (MS) patient

image dataset with 49 subject images, with four training subjects and testing on the
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(a) (b) (c) (d) (e)

Figure 4.2: (a) Subject T1w, (b) T2w, (c) PDw images, with (d) SynthCRAFT
FLAIR, and (f) Subject Real FLAIR.

remaining 45. We computed average PSNR (20.81, std = 1.19), UQI (0.81, std =

0.03) and SSIM (0.78, std = 0.03), over these 45 subjects. These values indicate that

the synthetic FLAIRs are structurally and visually similar to their corresponding real

FLAIRs. Figure 4.2 shows the input images and the synthetic FLAIR image along

side the real FLAIR image.

Next, we investigated the segmentations acquired from these synthetic FLAIRs.

We would like the segmentation algorithm, LesionTOADS [55], to behave identically

for real and synthetic images. LesionTOADS uses a T1w and a corresponding FLAIR

to generate a multi-class, topologically correct segmentation in the presence of lesions.

We compared the overlap of segmentations obtained using synthetic FLAIRs to those

obtained using real FLAIRs in terms of Dice coefficients (averaged over 45 subjects)

for white matter (0.97, std = 0.01) (WM), gray matter (0.99, std = 0.01) (GM),

cerebrospinal fluid (0.97, std = 0.01) (CSF) and white matter lesions (0.52, std =

0.17) (WML).

Figure 4.3 shows the segmentations by LesionTOADS on real and synthetic FLAIRs.
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(a) (b) (c) (d) (e)

Figure 4.3: (a) Subject T1w, (b) SynthCRAFT FLAIR, (c) LesionTOADS segmenta-
tion of T1w + SynthCRAFT FLAIR, (d) Subject real FLAIR, and (e) LesionTOADS
segmentation of T1w + real FLAIR.

The overlap is very good for WM, GM, and CSF, however it is low for the WML

class. The lesions being small and diffuse, even a small difference in the overlap

can cause a low value for the Dice coefficient. So, we looked at the overall lesion

volumes as provided by the algorithm for real and synthetic FLAIRs. To understand

how different the lesion volumes are for the synthetic images as compared to the

real images, we created a Bland-Altman [59] plot shown in Fig. 4.4. Let RFlv be

the lesion volumes given by LesionTOADS using real FLAIRs as input. Let SFlv be

the lesion volumes using synthetic FLAIRs as input. Bland-Altman plot is a scatter

plot of (RFlv − SFlv) (y-axis) versus (RFlv + SFlv)/2 (x-axis). The measurements

are considered to be interchangeable if 0 lies within ±1.96σ where σ is the standard

deviation of (RFlv− SFlv)/2. There is a small bias between RFlv and SFlv (mean =

0.88× 103) however, 0 does lie between the prescribed limits and hence based on this

plot we can say that these two measurements are interchangeable.

Thus, in this experiment we have shown that SynthCRAFT is also capable of
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Figure 4.4: A Bland-Altman plot of lesion volumes for synthetic FLAIRs vs real
FLAIRs.

FLAIR synthesis, like REPLICA and Ψ-CLONE. The lesion segmentation results are

very similar to REPLICA, even though the quality of images is not as good.

4.3.3 Intensity Standardization

Next, we perform an intensity standardization experiment, similar to the one

we performed for REPLICA as described in Section 2.3.4. We wish to demonstrate

that SynthCRAFT has the same capabilities as REPLICA with regards to intensity

standardization. We use the same subset of the BLSA dataset [64] that we used

in the REPLICA intensity standardization experiment (Section 2.3.4). This subset

consists of 82 scans of 60 subjects, some of which are longitudinal acquisitions. Each

scanning session was carried out on a Philips 1.5 T scanner and has an SPGR (see

Fig. 2.12(a)) and an MPRAGE (see Fig. 2.12(b)) acquisition from the same session.

158



CHAPTER 4. SYNTHCRAFT

The goal of this experiment is to show that a segmentation algorithm provides different

results for SPGR and MPRAGE, but using synthetic MPRAGE images generated

from SPGR images can reduce the difference in the segmentations. We use an in-house

implementation of the probabilistic atlas-driven, EM-base segmentation algorithm

by [61], which we refer to as AtlasEM. AtlasEM provides us with a 4-class segmentation,

the classes being sulcal CSF, GM, WM, and ventricles. In an ideal scenario, where

the algorithm is impartial to the underlying T1w input, the segmentations should be

identical. We calculate the tissue volumes provided by AtlasEM on all three sets of

images, SPGR, MPRAGE, and synthetic MPRAGE. As stated earlier, if the AtlasEM

algorithm were robust to the input modality, the tissue volumes for a particular tissue

should be identical for SPGR and MPRAGE. In Fig. 4.5 (a)–(d), we show scatter plots

for the tissue volumes obtained on real MPRAGEs (x-axis) and those obtained for

SPGRs (blue) and synthetic MPRAGEs (red). We also show the least square line fits

to the scatter plots (blue for SPGR, red for synthetic MPRAGE). In the ideal scenario,

the least square line fits should be close to the x = y line. We can see that for sulcal

CSF (Fig. 4.5(a)), GM (Fig. 4.5(c)), and WM (Fig. 4.5(d)), synthetic MPRAGE is

closer to the identity line than SPGR. The ventricle volumes are more or less similar

in both the modalities (Fig. 4.5(b)). Comparing these results with the ones shown in

Fig. 2.13, we can see that SynthCRAFT can produce intensity standardization results

that are similar to REPLICA.

Thus, in this experiment we have shown that SynthCRAFT is capable of intensity
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(a) (b)

(c) (d)

Figure 4.5: (a) CSF AtlasEM volume scatter plot for SPGR vs MPRAGE and
synthetic MPRAGE vs MPRAGE, (b) Ventricles AtlasEM volumes, (c) GM AtlasEM
volumes, and (d) WM AtlasEM volumes. The blue scatter plots are of volumes observed
in SPGR vs those in MPRAGE. The red scatter plots are of volumes observed in
synthetic MPRAGE vs those in MPRAGE. The black line indicates the identity
transform x = y.

standardization tasks like REPLICA and the tissue segmentations results are very

similar to tissue segmentation on REPLICA-generated images. SynthCRAFT however

offers us the theoretical guarantee of providing the most optimal image based on the
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posterior distribution, which REPLICA does not.

4.3.4 Super-resolution of FLAIR

MPRAGE LR FLAIR HR FLAIR SR FLAIR

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.6: Coronal slices of LR, HR, and SR FLAIRs along with their corresponding
LesionTOADS segmentation are shown. It is evident that using a LR FLAIR affects
the segmentation of the lesions and even the cortex.

Next, we applied SythCRAFT to synthesize super-resolution (SR) FLAIRs using

corresponding high resolution (HR) MPRAGE and low resolution (LR) FLAIRs, a

similar application to REPLICA’s.

Our approach can be described as an example-based super-resolution [24] technique.

Example-based methods leverage the high resolution information extracted from a

HR image—an MPRAGE, for example—in conjunction with a LR input image—

corresponding FLAIR image—to generate a SR version of the LR image. We used

HR (1× 1× 1 mm3) MPRAGE and FLAIR data, and downsampled the HR FLAIR

to create a LR (1× 1× 4 mm3) FLAIR. The atlas data included an HR MPRAGE
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+ LR FLAIR and we trained SynthCRAFT to predict the HR FLAIR. Given a

test HR MPRAGE and LR FLAIR, we applied SynthCRAFT to synthesize a SR

FLAIR. We ran the LesionTOADS segmentation algorithm [55] on three scenarios

for each subject: (a) HR MPRAGE + LR FLAIR (b) HR MPRAGE + SR FLAIR

(c) HR MPRAGE + HR FLAIR. The last case acting as the ground truth for how

the segmentation algorithm should behave on best case data. We aim to show that

the tissue segmentation using SR FLAIR is closer to that achieved using HR FLAIR,

than using LR FLAIR. Figure 4.6(d) shows the super-resolution results, the LR

FLAIR image is shown in Fig. 4.6(b), and the HR FLAIR image in Fig. 4.6(c). The

corresponding LesionTOADS segmentations are shown in Figs. 4.6(e), (f), and (g),

respectively. The lesion boundaries as well as the cortex is overestimated when a LR

FLAIR is used. Shown in Fig. 4.7 are the lesion volumes on 13 subjects for each of

the three scenarios.

Thus, SynthCRAFT can also be used for FLAIR super-resolution. The lesion

segmentation results are very similar to REPLICA, even though the quality of images

is not as good.

4.4 Summary and Discussion

We have described an image synthesis framework, SynthCRAFT, as an inference

problem on a Gaussian CRF. The parameters of the Gaussian CRF are built from
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Figure 4.7: Shown are the lesion volumes acquired by LesionTOADS on
HR FLAIR+HR MPRAGE (black), LR FLAIR+HR MPRAGE (blue), and SR
FLAIR+HR MPRAGE (red). Note that the black plot is closer to the red plot than
the blue plot for all but one of the subjects.

parameters stored at the leaves of a single regression tree. Parameter learning is done

by maximizing a pseudo-likelihood objective function.

We have shown that SynthCRAFT is competitive with the state-of-the-art image

synthesis algorithms. The quality of synthesis is not as good as REPLICA in terms of

image quality metrics, but we believe that with the right set of parameters, this gap

can be bridged easily. We intend to perform a rigorous parameter selection experiment,

similar to REPLICA in the future.

SynthCRAFT was also shown to be effective for FLAIR synthesis and example-

based super-resolution of FLAIR images. It can be applied in realistic scenarios, where

imaging data is missing and needs to be replaced by a feasible alternative. Finally we

also applied our algorithm to enhance the resolution of low resolution FLAIRs and

showed improved tissue segmentation as a result. The segmentation results obtained
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were comparable to REPLICA and we hope to demonstrate more applications with

continuing improvements to the algorithm.

SynthCRAFT is flexible in terms of features it can use to create the initial regression

tree. It is also general enough to add larger neighborhoods and long-range relationships

among voxels. Adding more neighbors leads to additional parameters, but these can

be stored in the same initial tree and we do not need to create any more trees. Our

approach is also computationally efficient, training from millions of samples in 20–30

minutes. Inference takes less than five minutes. The parameter learning algorithm is a

projected gradient descent algorithm that we have parallelized over the training voxels.

With clever programming we intend to speed it up even more, the implementation of

which is ongoing.

The multi-scale nature of REPLICA can be easily added into SynthCRAFT. This

would involve adding more ‘neighbor’ relationships, not across the same image but

across scales of a Gaussian pyramid. Therefore a voxel in the highest resolution level

will have a neighboring voxel in the level lower to itself. This will add another pairwise

potential, which will be a cross-scale potential. It will also mitigate the oversmoothing

caused in REPLICA results when information from lower resolution levels dominates

that from the higher resolution ones.

Another avenue to extend this work is for longitudinal image processing. MRI data

that has been acquired longitudinally can be used for synthesis by considering spatial

as well as temporal neighbors of voxels. This can be especially useful for time-series
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MRI acquisitions like functional MRI (FMRI). None of these extensions is obviously

available to REPLICA.
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Chapter 5

Discussion, Conclusions, and

Future Work

5.1 Summary

In this thesis, we have described three different image synthesis algorithms. In

Chapter 2, we explored the feature design and the strengths and limitations of random

forest regression to come up with a multi-resolution image synthesis algorithm that

we called REPLICA. In Chapter 3 we outlined Ψ-CLONE, which estimated the

pulse sequence parameters from a given image and used them to augment the atlas

dataset, which allowed the subsequent random forest regression to produce a synthetic

image. Finally in Chapter 4 we formulated a probabilistic, discriminative framework

which framed the image synthesis problem as inference on a Gaussian CRF. Here, we
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summarize what we have learned and what we need to do to improve in the future.

5.2 REPLICA

5.2.1 Key Points and Results

• REPLICA is multi-resolution, random forest regression algorithm for image

synthesis. REPLICA assumes that the subject image is easily standardized

to the atlas data. It uses innovative features that combine local and global

information to provide an unambiguous intensity mapping from input modalities

to the output modality.

• REPLICA was shown to be significantly better than state-of-the-art algorithms

on the T2w synthesis task. For that particular task and that particular dataset,

REPLICA provides better results than the published version Ψ-CLONE. However,

Ψ-CLONE updated with REPLICA as a component would perform even better.

• Using REPLICA we performed full-head T2w image synthesis given a T1w image

as input. Full-head MR image synthesis is a challenging image synthesis problem

due to high variability in anatomy and the tissue MR intensities and was not

performed successfully by other competing algorithms.

• We used REPLICA for FLAIR synthesis and went ahead and performed lesion

segmentation to demonstrate that synthetic FLAIR images provided a similar
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segmentation as real FLAIR images, which no previous algorithm had shown.

• REPLICA was also shown to perform example-based super-resolution of T2w

and FLAIR images and we also showed that the super-resolution FLAIR images

improved the lesion segmentation, which also was the first such demonstration

for super-resolution approaches in MRI.

• Intensity standardization between SPGR and MPRAGE was also performed

using REPLICA and further tissue segmentation results confirmed that synthesis

can be used to reconcile to diverse datasets.

• REPLICA has also been shown to improve cross-modality registration [44],

where instead of registering a T1w image to a T2 image, it is beneficial to register

it to a synthetic T1w image generated from the target T2w image.

• Like Ψ-CLONE, REPLICA is also computationally fast. Training can take up

to 20 minutes, but is a one-time task. Actual synthesis can be easily parallelized

over multiple cores, and can be performed in under a minute. Given the typical

times of neuroimaging pipelines (usually many hours), this makes the use of

REPLICA as a preprocessing step quite feasible.

5.2.2 Future Work

• REPLICA uses random forest regression, which predicts by averaging the values

in leaf node. This leads to REPLICA results appearing slightly smoother and
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with less noise than in real images. Though this characteristic of synthetic

images is not always bad, it can lead to algorithms behaving differently for

synthetic images than for real images, which is not desirable. This was one of

the motivations for development of SynthCRAFT, later in our research.

• The features designed for REPLICA are useful in most image synthesis tasks,

but have been hand-designed with the human expertise, and hence may not

be general for all possible tasks. In the future we envision a feature discovery

module added to REPLICA that will automatically discover features that are

necessary for that particular synthesis task and only use those. Recent advances

in deep learning in the machine learning literature are encouraging [96], but these

methods are not yet powerful enough to handle the high-dimensional medical

imaging data.

• One of the issues with REPLICA is that it is an ad-hoc approach towards image

synthesis. It works, but it is not clear how to interpret it in a probabilistic

setting. Additionally, as we mentioned earlier, REPLICA generates an image

voxel-by-voxel, each independent of the rest, when it is known that these voxels,

especially neighboring ones are not independent of each other. The drive

to formulate a solution to this problem led to the creation of SynthCRAFT.

However, the wisdom gained on the way to creating REPLICA proved invaluable

for SynthCRAFT.
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5.3 Ψ-CLONE

5.3.1 Key Points and Results

• Ψ-CLONE estimates the acquisition parameters of a given image to generate a

synthesis that respects the MR image formation process. Previous work in MR

image synthesis had so far ignored the image acquisition process. Our process

of using the underlying NMR tissue parameters to construct additional atlas

images that are adaptable to the input subject image is unique.

• Ψ-CLONE was validated on phantom data and was shown to perform intensity

standardization of T1w images across time and on large datasets. It was also used

to synthesize T2w and FLAIR pulse sequences and shown to be superior to other

competing approaches. We also showed it capable of performing example-based

super-resolution of low resolution T2w images.

• Ψ-CLONE is computationally very fast and can be used as preprocessing tool

to reconcile disparate datasets, replace a missing or artifact-affected dataset or

improve the quality of existing datasets for the purpose of improving further

image analysis.

• Ψ-CLONE can be thought of as a very general MRI image synthesis solution,

where we do not need training data to be similar to the test data. Using MRI

imaging equations, we can always create the appropriate training data. In
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neuroimaging research where appropriate data is indispensable and more often

than not, unavailable, Ψ-CLONE offers a solution to bypass this need.

5.3.2 Future Work

• Estimation of pulse sequence parameters is an important step and requires

an initial segmentation of the input subject image. So far, our input images

have been T1w images, which are not difficult to segment quickly. However,

for different pulse sequence inputs we would need an estimate of the tissue

segmentation. One solution is to use other supervised methods to get a crude

estimate of the tissue segmentation from the input image.

• The pulse sequence parameters estimated by our method are not equal to the true

parameters due to various approximation errors. However, even these “wrong”

parameter values when used in a pulse sequence equation produce an image that

is very close to the ground truth, as we showed in Chapter 3. Even though the

metrics we use to measure the similarity of the images are commonplace; they

may have a subtle deficiency that could only be revealed by a far larger and

more rigorous study.

• Finally, in the published version of Ψ-CLONE the random forest regression

used very simple features like local patches and sub-optimal parameters for

the random forest. Further research in REPLICA has given us a much better
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understanding of what parameters we need to use. We intend to include these

improvements in the next version of Ψ-CLONE.

5.4 SynthCRAFT

5.4.1 Key Points and Results

• In SynthCRAFT, we have formulated image synthesis as an inference problem in

a probabilistic graphical model framework. SynthCRAFT models the conditional

distribution of the desired synthetic image given the available input images as a

Gaussian conditional random field.

• The parameters of the GCRF are stored in leaves of a regression tree, which is

built using available training data. Parameter learning is achieved by pseudo-

likelihood maximization.

• Given a subject image, the synthetic image is predicted by building the condi-

tional distribution and carrying out MAP estimation using conjugate gradient

descent.

• SynthCRAFT was shown to be capable of performing T2w synthesis and FLAIR

synthesis with similar segmentations reported for real and synthetic FLAIRs.

The quality of synthesis is not as high as REPLICA, but with better parameter

tuning, can improve considerably.
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• SynthCRAFT was also used for example-based super-resolution of low resolution

FLAIR images and segmentation results of the super-resolution images were

better than the low resolution inputs, again similar to REPLICA.

• The probabilistic nature of SynthCRAFT enables us to determine a synthetic

image that is optimal for a well-defined objective, unlike REPLICA, where the

output is largely the result of intuitive engineering choices.

• SynthCRAFT is also computationally efficient, training from millions of samples

in 20–30 minutes. Inference takes less than five minutes.

5.4.2 Future Work

• SynthCRAFT is an attractive theoretical concept, but implementation-wise it

includes many parameters that need to be tuned for improving the final result.

REPLICA also has small set of such parameters that we tested empirically. Such

an analysis is essential for SynthCRAFT.

• Since SynthCRAFT also derives information from a regression tree learned from

training data, like REPLICA, we need to explore better feature design and

automated feature selection/generation.

• The parameter learning process of SynthCRAFT is based on gradient descent and

requires the gradient to be calculated at each iteration. It is already parallelized
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across voxels, but can be made faster with a serial algorithm, which will use

more memory but reduce computing time.

• SynthCRAFT is easily extendible to multi-resolution frameworks like REPLICA

by simply adding more neighbors that are between different scales. It is also very

easy to add neighbors across time to provide a longitudinal processing algorithm

that will synthesize a whole chain of longitudinally acquired images.

5.5 Concluding Thoughts

We have presented three different methods for image synthesis in brain MRI.

The goal of this work was to develop an image synthesis tool that will help improve

subsequent image analysis. We have shown that our methods help improve segmenta-

tion [45,46,97], and registration [44,98]. Our methods are fast, computationally cheap

and do not have strict requirements on input. We can apply these methods to enhance

quality of available datasets, reconcile differences between them, and make possible

consistent image analysis. Our hope is that researchers find these tools worth using

to solve those problems in their data that otherwise would not have been possible to

tackle. We have shown our validation for a certain set of algorithms and on certain

sets of data. We would like more validation to happen on the data “in the wild”, and

for that to happen we need to make these methods freely available and user-friendly.

We intend for this work to culminate into an image synthesis toolkit. Such a toolkit
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would enable reproducible research. We also intend for it to be useful to researchers in

the community and is of wide applicability in the field. Our vision for the long term

future for these methods is to include them in the MRI scanner firmware. Since these

methods are fairly light, implementing them on the scanner is not difficult. Once in

the scanner, with access to imaging parameters and the acquired image, our methods

can be immediately used to improve image resolution, fix image artifacts, standardize

intensities, and generate images that were not included in the imaging protocol, on

the fly. A patent describing these ideas has been filed [99]. Such a future would be

exciting not only for the tremendous possibilities involved, but also for the dramatic

reduction of scanning expenses and increase in patient comfort.
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